

ShareScript Language Reference

9th Edition

ShareScript Language Reference 2

ShareScript Language Reference

This document is aimed at reasonably experienced programmers or those who really
want to understand, at a deeper level, how ShareScript works. Such an understanding
will enable you to write better organised, faster code and generally get the most out of
ShareScript.

You will find in this Language Reference a description of the classes, objects and functions that

are defined by ShareScript. It contains four sections:

• Section 1 describes ShareScript’s Global Functions and Objects which are available

for use throughout Alpha and provide access to the price and fundamentals database,

analytics, and access to a console (which can be useful when debugging).

• Section 2 describes Column Objects, which provide an interface to ShareScript

columns in Alpha’s list screens. You can add your own behaviour to a column by

overriding certain functions. These objects also provide a number of methods and

properties specifically for use when you are creating a custom column. These methods

are not accessible elsewhere.

• Section 3 describes Indicator Objects, which provide an interface to ShareScript

indicators. Like Columns, these objects also provide methods and properties specifically

for use with custom indicators, and these are not accessible elsewhere.

• Section 4 describes Chart Study Objects, which provide an interface to ShareScript

chart studies.

• Section 5 describes the Storage Object, a property of both Column, Indicator and

Chart Study objects. This allows you to store persistent data (e.g. user settings) in a

custom column, indicator or study.

Classes, objects and functions are arranged alphabetically in each section. Some examples of

use are given when they clarify an explanation, but this reference is not intended as an

introduction to the ShareScript language.

Note that many of the functions can throw (catchable) exceptions and these are listed where

appropriate. TypeError exceptions are not explicitly listed, but are thrown by any ShareScript

function that receives a parameter that is not of the expected type.

Core JavaScript

ShareScript extends the JavaScript language, and this reference only documents ShareScript’s

additions to the language. “JavaScript, The Definitive Guide” by David Flanagan from O’Reilly

Press is now in its 5
th
 Edition and provides a complete introduction and reference to the core

JavaScript language.

Part III of that book is a reference guide to JavaScript’s built in functions and objects (such as

the Date class and Maths functions). This document is intended to sit alongside that section (or

any other similar JavaScript reference guide) to provide a complete reference for the

ShareScript language
1
.

1
 Note that ShareScript is based on version 1.6 of the JavaScript language. A small number of functions

(which are often useful when working with arrays) were added in 1.6, and are not described in

“JavaScript, The Definitive Guide” (which covers version 1.5). Information about these additional

functions can be found at:
http://developer.mozilla.org/en/New_in_JavaScript_1.6

ShareScript Language Reference 3

What’s new in ShareScript v1.35?

This edition of the reference covers the new objects and functions available in the latest update

to ShareScript (v1.35) released in Winter 2013.

Like previous minor releases, there are no major new features in this version of ShareScript.

However there are a number of enhancements which are outlined here, and in more detail in the

relevant sections of this reference.

To support the new set of advanced results added to the Alpha database, there are new constants

defined by the Result object. There are also some minor changes to the existing constants to

normalise the treatment of EPS which should always be post-tax.

Some new list constants have been added to the List object to reflect recent changes and

additions to Alpha.

Some new types and parameters are now available for Risk Analysis to reflect additions to

Alpha.

The getBarLength() method has been added to indicators (it previously only existed in studies).

The ShareScript Library

Alpha comes with a useful library of ShareScript functions available for use in your own scripts.

The library file (SSLib.ssl) will be updated in future releases, and currently contains:

(i) A set of functions to simplify basic user input

(ii) A function to look for crosses in datasets

To use these functions, first load the library, then call the desired function. All the functions are

declared in the SSLib namespace to avoid naming conflicts. e.g.

load("Libraries/SSlib.ssl");

var num = SSLib.intInput("Please enter a number", 0, 1000);

Note that the functions in the SSLib for building weekly and monthly bar data are still present,

but now simply call the built-in methods getWeeklyBarArray() and getMonthlyBarArray() to

obtain the data. Older scripts using these SSLib functions should now be much faster. New

scripts should simply call these Share object methods directly, rather than using SSLib.

© Ionic Information Ltd. 1997-2011 All rights reserved. This reference and the program are copyright works
of Ionic Information Limited, London, England and are licensed in terms of our standard contract. The data
referred to herein is the copyright of the London Stock Exchange, Hemscott PLC, FTSE and others.
Reproduction in whole or in part without the express written permission of Ionic Information Ltd is
prohibited. Reverse engineering is also prohibited. Alpha is the trademark of Ionic Information Ltd.

Global Functions and Objects Reference

ShareScript Language Reference 4

Global Functions and Objects Reference

Analytic Classes (single value) ShareScript v1.1

access Alpha’s built�in analytics Object�Analytic

Introduction

The analytics discussed here are “single value” analytics – i.e. the output of each analytic

calculation is always a single value. These analytic classes are documented together since

they share a common usage pattern. Note that there is a second set of analytic classes, where

the calculation produces multiple output values (e.g. MACD). These have a different usage

pattern and are documented later.

Constructors
new ATR(period) Average True Range

*

new Correlation(period) Correlation
**

 ShareScript v1.31ShareScript v1.31ShareScript v1.31ShareScript v1.31

new CMO(period) Chande Momentum Oscillator

new CCI(period) Commodity Channel Index
*

new CTI(period) Chande Trend Index

new Momentum(period) Momentum

new OnBalVol() On Balance Volume
*

new Oscillator(period) Oscillator

new PriceOsc(short, long)
new PriceOsc(short, long, MAtype)

Price Oscillator

new RSI(period)
new RSI(period, RSItype)

Relative Strength Index

new UltimateOsc(period, period, period) Ultimate Oscillator
*

new Variance(period) Sample variance

new Volatility(period) Volatility

new VHF(period) Vertical Horizontal Filter

new Williams(period) Williams %R
*

new WilliamsAD(period) Williams Acc/Dist
*

Call one of the above constructors to create an analytic object of the desired type. See the

table below for more information about the constructor arguments.

Arguments

period An integer specifying a period (or buffer) length for the analytic.

short An integer specifying the short period length.

long An integer specifying the long period length.

MAtype Optional moving average type. You should supply a static constant defined on

*
 indicates an OHLCV analytic – see the description for details.

**
 Correlation is slightly different from the other analytics since it requires a pair of data series – see the

description for usage details.

Global Functions and Objects Reference

ShareScript Language Reference 5

the MA object (e.g. MA.Exponential). The default is MA.Simple.

RSItype Optional RSI type. You should supply a static constant defined on the RSI

object. Values are RSI.Wilder (default), RSI.Exponential or RSI.Simple.

Throws

RangeError If an invalid period or type is passed to the constructor.

Methods

The following methods are used to get the current value of an analytic, and to add new values

to the analytic. These functions are documented fully in the pages that follow.

getNext() Return the new analytic value after adding new values to the buffer.

getValue() Return the current analytic value.

Description

The analytic classes provide access to Alpha’s built-in analytic/indicator calculations.

Together with the moving average (MA) class, these can be used as building blocks for your

own custom analyses or indicators.

The analytics discussed here are “single value” analytics – i.e. the output of each analytic

calculation is always a single value. As such, they share a common usage pattern, which is

very similar to the interface provided by MA objects. Like MA objects, analytic objects maintain

their own buffers of values, and allow you to feed new values in and get a new analytic value

out.

The input for the getNext() function differs depending on the analytic. Most analytics expect

a number (usually the close price). However, some analytics use OHLCV data as input for

their calculations. These analytics are indicated with a *

symbol to the right of their names

above.

One exception to the pattern above is the Correlation analytic, which calculates the

correlation between the changes of two different data-series over the required period. Unlike

the other analytics, each call to getNext() expects two inputs – the current value of each of

the two data series that you are correlating. Also note that since the calculation looks at the

changes between consecutive data points, you need to input (by calling getNext) one more

pair of data points than the period. i.e. for a 10 period correlation, you will need to pass 11

pairs of values. See the last example below for an illustration of usage.

When an analytic requires OHLCV data, you should either pass a PriceData or Bar object to

getNext(), or alternatively you can create your own object which must have open, high, low,

close and volume properties defined. Note, however, that only the OnBalVol analytic uses the

volume field. See the description of the getNext() method for more information on its usage

with the different analytic types.

Examples

The following example gets the closing price history for Lloyds TSB Plc. It then calculates

and outputs the value of the RSI analytic across the whole price history:

var closes = getShare("LSE:LLOY").getCloseArray();
var rsi = new RSI(20, RSI.Simple);
for (var i=0; i<closes.length; i++)
 print(rsi.getNext(closes[i]));

Note that the input to getNext() can also be an array (like MA.getNext), so you can pass the

complete price history to an indicator with a single call to getNext() and get back the most

recent value of the indicator:

Global Functions and Objects Reference

ShareScript Language Reference 6

var prices = share.getCloseArray();
var rsi = new RSI(20);
var latest = rsi.getNext(prices);

This final example illustrates the use of the Correlation analytic, which is used slightly

differently to the other analytics in that it acts on two data-series rather than a single one. We

will calculate the correlation of an instrument’s price changes to that of the FTSE 100 index,

over the last 20 days. Note that we take care to make sure that we are passing matching (in

date) data points for both series.

var period = 20;
var corr = new Correlation(period);
var prices = getShare("LSE:LLOY").getPriceArray(period + 1);
var ftse = getShare("UKI:UKX");
for (var i=0; i<prices.length; i++)

corr.getNext(prices[i].close, ftse.getCloseOnDate(prices[i].dateNum));
print("Correlation of LLOY to FTSE100 is " + corr.getValue());

See Also

MA, PriceData, Analytic Classes (multi-value)

Analytic.getNext()

add value(s) into an analytic, getting the new analytic value out

Synopsis

analytic.getNext(numbers...) non-OHLCV indicators

analytic.getNext(objects...) OHLCV indicators

Arguments

numbers... One or more numbers, or arrays of numbers. These are input to the

analytic from left to right. When a parameter is an array, elements are

processed from index 0 to index.length-1.

objects... One or more objects that have open, high, low, close and volume

properties, or arrays of these objects (normally, PriceData or Bar

objects are used). These are input to the analytic from left to right.

When a parameter is an array, elements are processed from index 0 to

index.length-1.

Returns

A number giving the current analytic value.

Description

getNext() returns a number which is the current value of an analytic object, after adding one

or more input values to the analytic.

When an analytic requires OHLCV data as input, you should normally pass PriceData

object(s) to getNext(). A PriceData object represents a single OHLCV bar in an indicator. In

the context of a chart study, Bar objects are also suitable input.

Note, however, that you can also construct your own objects, and pass these to an OHLCV

analytic. These objects must define open, high, low, close and volume properties. However,

note that in most cases, the volume can be zero, since only the OnBalVol indicator uses this

data. Please refer to Alpha’s Help to find out how each analytic is calculated.

Global Functions and Objects Reference

ShareScript Language Reference 7

Example

The following two examples show the use of each form of getNext(). First, the example we

saw earlier, calculating the RSI analytic using closing price data:

var closes = getShare("LSE:LLOY").getCloseArray();
var rsi = new RSI(20, RSI.Simple);
for (var i=0; i<closes.length; i++)
 print(rsi.getNext(closes[i]));

Now, we calculate the ATR, which is an OHLCV analytic. Note how we obtain an array of

PriceData objects (OHLCV bars) for the share, rather than just the closing prices. Each

PriceData record is then passed to getNext() to calculate the indicator:

var prices = getShare("LSE:LLOY").getPriceArray();
var atr = new ATR(14);
for (var i=0; i<prices.length; i++)
 print(atr.getNext(prices[i]));

See Also

PriceData, Share.getCloseArray(), Share.getPriceArray(), Indicator.getGraph()

Analytic.getValue()

get the current analytic value

Synopsis
analytic.getValue()

Returns

A number giving the current analytic value.

Description

getValue() returns a number which is the current value of the analytic.

Analytic Classes (multi-value) ShareScript v1.1

access Alpha’s built�in analytics Object�Analytic

Introduction

The analytics discussed here are “multi-value” analytics – i.e. each analytic calculation

produces more than one output (e.g. the main value and a signal line value). Note that there is

another set of analytic classes, where each calculation produces a single output value. These

have a different usage pattern and are documented above.

Constructors
new AdaptiveStochOsc(min, max, slow, sig, MAtype)
new AdaptiveStochOsc(min, max, slow, sig)

Adaptive Stochastic Oscillator
*

new ADX(period) ADX
*

new Aroon(period) Aroon
*

new MACD(short, long, sig) MACD

new MinMax(period) Rolling Min/Max

*
 indicates an OHLCV analytic – see the description for details.

Global Functions and Objects Reference

ShareScript Language Reference 8

new StochOsc(period, slow, sig, MAtype)
new StochOsc(period, slow, sig)

Stochastic Oscillator
*

new Trend(period) Rolling Trend calculation

Call one of the above constructors to create an analytic object of the desired type. See the

table below for more information about the constructor arguments.

Arguments

period An integer specifying a period (or buffer) length for the analytic.

sig An integer specifying a signal line period.

slow An integer specifying a slowing period.

min, max Integers specifying the min and max periods for an adaptive stochastic

oscillator.

short, long Integers specifying the short and long period lengths for an MACD.

MAtype Optional moving average type. You should supply a static constant defined on

the MA object (e.g. MA.Exponential). The default is MA.Simple.

Throws

RangeError If an invalid period or type is passed to the constructor.

Methods

The following method is common to all the multi-value analytics, and is used to put new data

into the analytic calculation:

next() Put new data into the analytic.

AdaptiveStochOsc, MACD & StochOsc Methods

getMain() Get the analytic main value.

getSignal() Get the signal line value.

ADX Methods

getPDI() Get +ve directional indicator value.

getNDI() Get -ve directional indicator value.

getADX() Get average directional index.

getADXR() Get average directional index rating.

Aroon Methods

getUp() Get Aroon up value.

getDown() Get Aroon down value.

MinMax Methods

getMin() Get the minimum value in the buffer.

getMax() Get the maximum value in the buffer.

Global Functions and Objects Reference

ShareScript Language Reference 9

Trend Methods

getSlope() Get the trend line gradient.

getValue() Get the trend’s latest value.

getStdDev() Get the standard deviation of the trend.

Description

This second set of analytic classes provides access to Alpha’s remaining built-in

analytic/indicator calculations. Together with the moving average (MA) class, these can be

used as building blocks for your own custom analyses or indicators.

The analytics listed above are “multi-value” analytics – i.e. each analytic calculation results in

more than one value. Unlike MAs and single-value indicators, there is no getNext() method.

Instead, you should feed a new value into the calculation using the next() method, then call

one or more of the appropriate get() functions to return the desired calculation result.

As with getNext() for single-value analytics, the input for next() differs depending on the

analytic. Most analytics expect a number (usually the close price). However, some analytics

use OHLCV data as input for their calculations. These analytics are indicated with a *

symbol

to the right of their constructor descriptions above.

When an analytic requires OHLCV data, you should either pass a PriceData or Bar object to

next(), or alternatively you can create your own object which must have open, high, low,

close and volume properties defined. Note, however, that none of these analytics use the

volume field, which can be assigned a null value. See the description of the next() method

for more information on its usage with the different analytic types.

Information about all the analytics (with the exception of MinMax) and their calculations can

be found in the Alpha Help.

MinMaxMinMaxMinMaxMinMax objects provide a simple building block useful in many custom indicators. A buffer

size is specified to the constructor. New values can be added to the buffer, and the oldest

values are automatically removed when the buffer is full. At any point, you can query the

object for the current maximum and minimum values in the buffer.

Example

The following example gets the closing price history for Lloyds TSB Plc. It then calculates

and outputs the values of the MACD analytic across the whole price history:

var closes = getShare("LSE:LLOY").getCloseArray();
var macd = new MACD(13, 26, 9);
for (var i=0; i<closes.length; i++)
{
 macd.next(closes[i]);

print("macd = " + macd.getMain() + " signal = " + macd.getSignal());
}

This next example illustrates the MinMax object in use. Note how next() can accept either a

single value, or an array of values:

var x = new MinMax(5);
x.next([10,5,4,7,9]);
x.getMax(); // returns 10
x.next(2); // oldest value discarded (buffer is now 5,4,7,9,2)
x.getMax(); // returns 9

See Also

MA, PriceData, Analytic Classes (single value)

Global Functions and Objects Reference

ShareScript Language Reference 10

Analytic.next()

add value(s) into an analytic

Synopsis

analytic.next(numbers...) non-OHLCV indicators

analytic.next(objects...) OHLCV indicators

Arguments

numbers... One or more numbers, or arrays of numbers. These are input to the

analytic from left to right. When a parameter is an array, elements are

processed from index 0 to index.length-1.

objects... One or more objects that have open, high, low, close and volume

properties, or arrays of these objects (normally, PriceData or Bar

objects are used). These are input to the analytic from left to right.

When a parameter is an array, elements are processed from index 0 to

index.length-1.

Returns

Nothing. Use the appropriate analytic get() function to get a result of the calculation.

Description

next() is the multi-value analytic equivalent of the getNext() function. See the description

for Analytic.getNext() above for more information about using this function.

Analytic.get() methods

get a result from an analytic calculation

Returns

A number giving the appropriate result of the analytic calculation, or undefined if the buffer

is empty.

Bar ShareScript v1.2

represents a chart bar in a chart study Object�Bar

Synopsis
Bar.property

Construction

Bar objects are made available through the bars array property of ChartStudy objects. They

cannot be created using the normal JavaScript new() operator.

Properties
open Read only The bar’s opening price in the minor currency unit (e.g. Pence).

high Read only The bar’s high price in the minor currency unit (e.g. Pence).

low Read only The bar’s low price in the minor currency unit (e.g. Pence).

close Read only The bar’s closing price in the minor currency unit (e.g. Pence).

Global Functions and Objects Reference

ShareScript Language Reference 11

volume Read only The volume of shares traded in the bar.

date Read only The date/time (a JavaScript Date object) of the bar end point.

dateNum Read only An integer representation of the date (see below for details).

timeNum Read only An integer representation of the time (seconds since midnight).

isOHLCV Read only A boolean value (true or false) indicating whether the record is

for a day where Alpha has full OHLCV data. See below for

further details.

isComplete Read only A boolean value (true or false) indicating whether the bar is

complete. A non-complete (i.e. partial) bar is still accumulating

data and the OHLCV values may change.

colour Read/Write An integer encoding the bar colour.

pen Read/Write A constant from the Pen object specifying the type of pen used to

draw the bar (e.g. Pen.Solid).

penWidth Read/Write An integer giving the width of the pen. Valid values are 0 to 7.

Widths >0 are only allowed for a pen type of Pen.Solid.

Description

Bar objects represent OHLCV bars on intraday and historical charts. They are made available

through the built-in study object properties: bar and bars. Bar objects share much in common

with PriceData objects, but have some additional write-able properties relating to the bar’s

visual appearance on a chart.

Because Bar objects share key properties with PriceData objects (i.e. OHLCV values), they

can often be used where a PriceData object is expected (e.g. with analytics).

As with PriceData objects, the dateNum & timeNum fields provides an integer representation of

the date and time. This is made available since JavaScript Date objects are relatively costly (in

terms of execution speed) to use and compare.

The isOHLCV field indicates whether Alpha has full OHLCV data for the instrument on the

date of the bar. The Alpha database has closing price only data for some instruments before a

certain date – in this case the isOHLCV field will be false, and the open, high and low values

will be the same as the close value. Note that when the period of a PriceData record is longer

than one day, the isOHLCV field will always be true.

The isComplete field indicates whether the bar is a complete or partial bar. Complete bars

have fixed OHLCV values, whereas partial bars are still accumulating data and the OHLCV

values may change as new data arrives in the intraday feed.

See Also

ChartStudy.bars, PriceData, dateNum(), timeNum(), Colour, Pen

beep() ShareScript v1.2

make a beep sound

Synopsis
beep()

Global Functions and Objects Reference

ShareScript Language Reference 12

Description

beep() is a global function that causes the computer to play a short alerting sound. Your

program is paused while the sound plays (about half a second).

See Also
print()

BidOfferData ShareScript v1.1

details an intraday price change Object�BidOfferData

Synopsis
BidOfferData.property

Construction

BidOfferData objects are returned in an array by the getIBidOfferArray() series of Share

object methods. They cannot be created using the normal JavaScript new() operator.

Properties
bid The bid price in the minor currency unit (e.g. Pence), or undefined if no value

is available.

offer The offer price in the minor currency unit (e.g. Pence), or undefined if no

value is available.

mid The mid price in the minor currency unit (e.g. Pence), or undefined if no value

is available.

date The date/time (a JavaScript Date object), or undefined if no value is available.

dateNum An integer representation of the date (see below for details).

timeNum An integer representation of the time (seconds since midnight).

index An integer giving the index of this event within the second (see below for

more information). ShareScript v1.33

isInAuction A Boolean value (true or false) indicating whether this record relates to an

intraday auction. If true, then the mid, bid and offer properties are all set to

the indicative auction uncrossing price. ShareScript v1.34

Description

BidOfferData objects represent an intraday price.

The dateNum & timeNum fields provides an integer representation of the date and time. This is

made available since JavaScript Date objects are relatively costly (in terms of execution

speed) to use and compare.

Even though the time resolution provided by the date and timeNum fields is limited to a

second, the records are always returned in the correct sequence by getIBidOfferArray().

However, if you need to determine to ordering of trades (which are returned separated by the

getITradeArray() method) with respect to bid/offers, then you must use the index fields

present in both arrays to determine the proper ordering of trades and prices that occur in the

same second. This field starts at zero each second and increments with each trade or bid/offer

occurring within that second.

Global Functions and Objects Reference

ShareScript Language Reference 13

See Also

dateNum(), timeNum(), Share.getIBidOfferArray(), Share.getIBidOfferArrayOnDate(),
PriceData, TradeData

Colour

colour functions and constants

Synopsis
Colour.constant
Colour.function()

Constants
Black

White

Red

Green

Yellow

Blue

Magenta

Cyan

Grey

Gray

DarkRed

DarkGreen

DarkYellow

DarkBlue

DarkMagenta

DarkCyan

DarkGrey

DarkGray

LightRed

LightGreen

LightYellow

LightBlue

LightMagenta

LightCyan

LightGrey

LightGray

Static functions
RGB() Create a colour from red, green and blue values.

getRValue() Get the red component of a colour.

getGValue() Get the green component of a colour.

getBValue() Get the blue component of a colour.

Description

Colour is a global object that defines properties that provide functions and constants to create

and examine colours (which are represented as integers). Currently, its sole use is with

Indicator objects.

Colour is not a class of objects like Date or MA, and there is no Colour() constructor. It can be

considered to be the same type of thing as the JavaScript Math object.

Examples
Colour.Blue, Colour.RGB(64,0,128)

See Also

Indicator.setSeriesColour(), Indicator.getBackColour(), Dialog.addColPicker()

Global Functions and Objects Reference

ShareScript Language Reference 14

Colour.getBValue()

get the blue component of a colour

Synopsis
Colour.getBValue(colour)

Arguments

colour An integer encoding a colour.

Returns

An integer that is the blue component of a colour (0-255).

Colour.getGValue()

get the green component of a colour

Synopsis
Colour.getGValue(colour)

Arguments

colour An integer encoding a colour.

Returns

An integer that is the green component of a colour (0-255).

Colour.getRValue()

get the red component of a colour

Synopsis
Colour.getRValue(colour)

Arguments

colour An integer encoding a colour.

Returns

An integer that is the red component of a colour (0-255).

Colour.RGB()

create a custom colour from red, green and blue values

Synopsis
Colour.RGB(red, green, blue)

Arguments

red An integer from 0 to 255 representing the amount of red.

green An integer from 0 to 255 representing the amount of green.

blue An integer from 0 to 255 representing the amount of blue.

Global Functions and Objects Reference

ShareScript Language Reference 15

Returns

An integer that encodes the specified colour.

clear()

clears the console

Synopsis
clear()

Description

clear() is a global function that clears the ShareScript console. The console window will also

be shown if it is not currently visible.

See Also
print()

dateNum()

create a Alpha dateNum

Synopsis
dateNum(dateObj)
dateNum(year, month, day)

Arguments

dateObj A JavaScript Date object to be used to create the dateNum.

year The year as an integer, in 4 digit format e.g. 2007.

month The month as an integer, from 0 (January) to 11 (December).

Day The day of the month as an integer, from 1-31.

Returns

An integer dateNum representing the date.

Throws

RangeError If any of the arguments are out of range.

Description

dateNum() is a global function that you can use to create a dateNum value (which is just an

integer that compactly represents a date). Scripts using dateNums will be faster than those

using JavaScript Date objects. Note that the year, month and day arguments are the same as

those used with JavaScript Date objects (i.e. the months start at 0, days start at 1).

Normally, you will not need to create dateNums yourself, but will obtain them from a

PriceData , BidOfferData and TradeData records. You can then use one of the other dateNum

functions below to inspect the date.

There is also a set of timeNum() functions that can be used to compactly represent the time

part of a JavaScript Date object.

Global Functions and Objects Reference

ShareScript Language Reference 16

See Also

PriceData, TradeData, BidOfferData, timeNum, dateNumGetYear(), dateNumGetMonth(),

dateNumGetDay(), Share.getIDateNum()

dateNumGetYear()

return the year for a Alpha dateNum

Synopsis
dateNumGetYear(n)

Arguments

n An integer dateNum obtained e.g. from a PriceData record or dateNum().

Returns

An integer providing the 4-digit year.

Description

dateNumGetYear() is a global function that returns the 4-digit year of a dateNum value. See

dateNum() for more information about dateNums.

Note that the corresponding Date method is Date.getFullYear(). The Date.getYear()

function is deprecated.

Example
var pd = getShare("LSE:LLOY").getPrice(); // get a PriceData record
var yr = dateNumGetYear(pd.dateNum); // return year of the price record

See Also

dateNum(), dateNumGetMonth(), dateNumGetDay()

dateNumGetMonth()

return the month for a Alpha dateNum

Synopsis
dateNumGetMonth(n)

Arguments

n An integer dateNum obtained e.g. from a PriceData record or dateNum().

Returns

An integer providing the month (0-11).

Description

dateNumGetMonth() is a global function that returns the month of a dateNum value. See

dateNum() for more information about dateNums.

To make month values easily interchangeable with those used by JavaScript Date objects,

months (unlike days) are numbered from 0 (January) to 11 (December).

Global Functions and Objects Reference

ShareScript Language Reference 17

See Also

dateNum(), dateNumGetYear(), dateNumGetDay()

dateNumGetDay()

return the day in the month for a Alpha dateNum

Synopsis
dateNumGetDay(n)

Arguments

n A integer dateNum obtained e.g. from a PriceData record or dateNum().

Returns

An integer providing the day (1-31).

Description

dateNumGetDay() is a global function that returns the day in the month of a dateNum value.

See dateNum() for more information about dateNums.

See Also

dateNum(), dateNumGetYear(), dateNumGetMonth()

Dialog ShareScript v1.1

create a dialog box for user�input Object�Dialog

Constructor
new Dialog()
new Dialog(title, width, height)

The Dialog() constructor creates a Dialog object which represents a Windows dialog box.

Dialog boxes can contain user interface elements (or controls) such as buttons and input fields

to obtain input from the user. If no parameters are passed to the constructor, a basic dialog

with a default width, height and caption will be created.

Arguments

title Optional string. The caption to be displayed at the top of the dialog box. By

default “ShareScript Dialog” is used.

width Optional. The width of the dialog box (in dialog units). The default is 200.

height Optional. The height of the dialog box (in dialog units). The default is 200.

Throws

RangeError If the width and height specify a dialog box that is too small.

Constants

The following static constants are defined to test the return value from Dialog.show():

Ok The user completed the dialog by clicking on the “OK” button.

Cancel The user completed the dialog by clicking on the “Cancel” button.

Global Functions and Objects Reference

ShareScript Language Reference 18

User The lowest value reserved for user-defined buttons. See

Dialog.addButton() for further details.

Methods

The following methods are defined on the Dialog object. These functions are documented

fully in the pages that follow.

addButton() Add a user-defined button

addCancelButton() Add a “Cancel” button.

addColPicker() Add a colour-picker control.

addColLinePicker() Add a colour and line picker control.

addDatePicker() Add a date picker control. ShareScript v1.32

addDropList() Add a control which presents a drop down list of values.

addGroupBox() Add a group box. This draws a box round a group of controls.

addHelpButton() Add a “Help” button to show an HTML help file.

addIntEdit() Add a text-edit control which accepts only integers (whole

numbers).

addNumEdit() Add a text-edit control which accepts any number.

addOkButton() Add an “Ok” button.

addSharePicker() Add a “Find a share” control. ShareScript v1.34

addText() Add explanatory text to the dialog.

addTextEdit() Add a text-edit control which accepts any text.

addTickBox() Add a tick-box control (also known as a checkbox).

getValue() After showing the dialog, get the value of a control.

show() Show the dialog, and return how it completes (with Ok or Cancel).

Description

The Dialog object allows you to create and present Dialog boxes to the user. The general

procedure for creating a dialog box in ShareScript is as follows:

(i) create a Dialog object using the constructor, specifying the size and caption

required.

(ii) add Ok and Cancel buttons, plus any other controls required using the set of

Dialog.add() functions. Each control (with the exception of buttons, text, and

group boxes) must be given a unique name, so the value can be retrieved later.

Note that the first control added will have focus when the dialog is activated, and

the TAB key order will be the same as the order that controls were added.

(iii) Call Dialog.show() to display the dialog to the user. The function will return

when the user either closes the dialog, or clicks an Ok or Cancel button. The

return value of the function will be Dialog.Ok if the user clicked an Ok button,

Dialog.Cancel otherwise.

(iv) Use Dialog.getValue() to retrieve the value of each named control.

Dialogs may only be used at certain times by ShareScript. e.g. you are allowed to display

a dialog when an indicator is being added to a graph, but not when the indicator data needs to

be calculated. This prevents dialogs from being displayed inappropriately and disrupting user

Global Functions and Objects Reference

ShareScript Language Reference 19

interaction with Alpha. This point is discussed further below in the description of the

Dialog.show() method.

Dialog layout can be specifed by passing x,y position, width and height for each control. You

can also use –1 for these parameters to make use of automatic layout and sizing. This

automatic layout is described below.

Buttons will be positioned automatically at the right hand side of the dialog box, with the first

button added at the top, and subsequent buttons positioned below. Automatic width and

height will give the default windows button size.

Other controls will be positioned 50 units from the left hand side of the dialog box, with the

first added at the top, and subsequent controls below. Automatic width and height provide

defaults that are usually appropriate for the control being added. If a specific x or y position is

given for a control, any subsequent control will be automatically positioned below that

control.

Group boxes do not provide automatic sizing or positioning (i.e. –1 is not a valid input).

However, they modify the positioning of any subsequent control, such that the next control

added with automatic positioning will be placed inside the group box, one third of the width

from the left.

Like group boxes, Text does not provide automatic sizing or positioning. Also the addition of

text to a dialog does not modify the positioning of any subsequent control.

Example

The following example creates a dialog to ask the user for the value of a “signal period”

parameter. If the user clicks Ok, the value is printed to the console. Note how all the controls

are automatically positioned, with labels being presented before and after the edit box.

var dlg = new Dialog("Enter settings", 180, 50);
dlg.addOkButton();
dlg.addCancelButton();
dlg.addIntEdit("period", -1, -1, -1, -1, "Signal Period", "days", 10);
if (dlg.show() == Dialog.Ok)
 print("User clicked okay with period = " + dlg.getValue("period"));
else
 print("User cancelled");

Dialog.addButton()

add a user�defined button to a dialog

Synopsis
dialog.addButton(x, y, w, h, caption, id)

Arguments

x, y The x and y position of the button (in dialog units). –1 for default position.

W, h The width and height of the button (in dialog units). –1 for default size.

caption The label for the button (string).

id An integer value which will be returned by Dialog.show(). Normally, this

should be a value greater than or equal to the Dialog.User constant. See

description below for more details.

Global Functions and Objects Reference

ShareScript Language Reference 20

Description

addButton() adds a user-defined button to the dialog. This is not normally necessary, and it is

easier to use the addOkButton() and addCancelButton() functions instead.

When the user clicks a user-defined button, it will terminate the dialog (after checking the

data is valid and within the ranges supplied). Dialog.show() will return the id value

associated with the button. Normally you will wish to avoid using the Dialog.Ok, and

Dialog.Cancel constants. For this reason, the Dialog.User constant is defined as the first

value that is not used by a pre-defined button (see example below).

Example
dlg = new Dialog()
dlg.addButton(-1,-1,-1,-1,”Next >>”, Dialog.User+0);
dlg.addButton(-1,-1,-1,-1,”<< Prev”, Dialog.User+1);
if (dlg.show() == Dialog.User+0)
 ...
else
 ...

Dialog.addCancelButton()

add a Cancel button to a dialog

Synopsis
dialog.addCancelButton()
dialog.addCancelButton(x, y, w, h, caption)

Arguments

x, y The x and y position of the button (in dialog units). –1 for default position.

W, h The width and height of the button (in dialog units). –1 for default size.

caption The label for the button (string). Default is “Cancel”.

Description

addCancelButton() adds a Cancel button to the dialog. If the user clicks this button to

terminate the dialog, Dialog.show() will return Dialog.Cancel. Normally you can call this

method without any parameters to create a correctly labelled and positioned button. You can

only add a single Cancel button to a dialog.

Dialog.addColPicker()

add a colour picker control to a dialog

Synopsis
dialog.addColPicker(name, x, y, w, h)
dialog.addColPicker(name, x, y, w, h, leftLabel, rightLabel, val)

Arguments

name The control’s name (string).

X, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control (in dialog units). –1 for default size.

leftLabel Optional. A label to be placed to the left of the control (string).

Global Functions and Objects Reference

ShareScript Language Reference 21

rightLabel Optional. A label to be placed to the right of the control (string).

val Optional. The initial colour shown by the button (integer). If not specified, the

default is black.

Description

addColPicker() adds a colour picker control to the dialog. The name of the control should

uniquely identify the control, so the value can be retrieved by Dialog.getValue().

Example

This shows a colour picker being added to a dialog. The colour picker is initialised to the

value of the variable lineColour (red):

var lineColour = Colour.Red;
var dlg = new Dialog("example",150,30);
dlg.addOkButton();
dlg.addColPicker("col1", -1, -1, -1, -1, "Line Colour", "", lineColour);
dlg.show();
lineColour = dlg.getValue("col1");

See Also

Colour, Dialog.addColLinePicker(), Indicator.setSeriesColour()

Dialog.addColLinePicker()

add a colour and line picker control to a dialog

Synopsis
dialog.addColLinePicker(name, x, y, w, h)
dialog.addColLinePicker(name, x, y, w, h, left, right, valCol, valStyle, valWidth)

Arguments

name The control’s name (string).

x, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control (in dialog units). –1 for default size.

left Optional. A label to be placed to the left of the control (string).

right Optional. A label to be placed to the right of the control (string).

valCol Optional. The initial colour shown by the button (integer). If not specified, the

default is black.

valStyle Optional. The initial pen style shown by the button (integer). If not specified,

the style will be Pen.Solid.

valWidth Optional. The initial pen width shown by the button (integer). Valid values are

0 to 7. If not specified this defaults to 0 (the thinnest line). Greater widths are

only allowed for a pen style of Pen.Solid.

Description

addColPicker() adds a colour and line style picker control to the dialog. The name of the

control should uniquely identify the control, so the value can be retrieved by

Dialog.getValue().

Global Functions and Objects Reference

ShareScript Language Reference 22

This control is unique in that Dialog.getValue() returns an object, rather than a simple value.

The object has several named fields to allow the independent retrieval of the line colour, pen

style and pen width. This is shown in the example below.

Example

This shows a colour and line picker being added to a dialog. Note how the different attributes

of the control are referenced following calls to Dialog.getValue().

var dlg = new Dialog("example",150,30);
dlg.addOkButton();
dlg.addColLinePicker("line1", -1, -1, -1, -1, "Signal Line");
dlg.show();
colour = dlg.getValue("line1").colour;
pen = dlg.getValue("line1").pen;
width = dlg.getValue("line1").width;

See Also

Colour, Pen, Dialog.addColPicker(), Indicator.setSeriesLineStyle()

Dialog.addDatePicker() ShareScript v1.32

add a date picker control to a dialog

Synopsis
dialog.addDatePicker(name, x, y, w, h)
dialog.addDatePicker(name, x, y, w, h, leftLabel, rightLabel, val)

Arguments

name The control’s name (string).

X, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control (in dialog units). –1 for default size.

leftLabel Optional. A label to be placed to the left of the control (string).

rightLabel Optional. A label to be placed to the right of the control (string).

val Optional. The initial date to be shown (JavaScript Date object). If not

specified, the default is today’s date.

Description

addDatePicker() adds a date picker control to the dialog. The name of the control should

uniquely identify the control, so the value can be retrieved by Dialog.getValue(). Because

the date picker has several on screen components, you should generally use the default width

and height of the control.

Example

This shows a date picker being added to a dialog. The date picker is initialised to the the first

of January 2010. The returned date is converted to a dateNum (e.g. for use with the storage

area).

var dlg = new Dialog("example",200,30);
dlg.addOkButton();
dlg.addDatePicker("date1", -1, -1, -1, -1, "Start Date", "", new Date(2010,0,1));
dlg.show();
var startDate = dateNum(dlg.getValue("date1"));

Global Functions and Objects Reference

ShareScript Language Reference 23

See Also
dateNum

Dialog.addDropList()

add a drop�down list control to a dialog

Synopsis
dialog.addDropList(name, x, y, w, h, items)
dialog.addDropList(name, x, y, w, h, items, leftLabel, rightLabel, val)

Arguments

name The control’s name (string).

x, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control (in dialog units). –1 for default size.

items An array of strings to be presented as options.

leftLabel Optional. A label to be placed to the left of the control (string).

rightLabel Optional. A label to be placed to the right of the control (string).

val Optional. An integer specifying the initial item selected. These are counted

from 0. (If not specified, this defaults to 0 i.e. the first item).

Description

addDropList() adds a drop-down list control to the dialog. The name of the control should

uniquely identify the control, so the value can be retrieved by Dialog.getValue().

Example

This shows the drop-down list control being added to a dialog.

var dlg = new Dialog("example",200,30);
dlg.addOkButton();
dlg.addDropList("list1", -1,-1,-1,-1, ["Apple", "Orange"], "Pick a fruit");
dlg.show();

Dialog.addGroupBox()

add a group box to a dialog

Synopsis
dialog.addGroupBox(x, y, w, h)
dialog.addGroupBox(x, y, w, h, caption)

Arguments

x, y The x and y position of the control (in dialog units).

W, h The width and height of the control (in dialog units).

caption The text label (string) displayed at the top of the box.

Description

addGroupBox() adds a group box to the dialog. This special dialog element can be used to

visually organise or group controls with related functions.

Global Functions and Objects Reference

ShareScript Language Reference 24

Unlike a normal control, it does not take a name as a parameter since the user cannot interact

with this control, and hence it has no value to return through Dialog.getValue().

Adding a group box to your dialog will modify the current “cursor” location for automatic

placement of controls. After a call to addGroupBox(), the cursor will be placed just inside the

top margin of the group box, and about a third of the way in from the left. Any subsequent

controls added with an x, y position of (-1,-1) will appear inside the group box.

Dialog.addHelpButton()

add a Help button to a dialog

Synopsis
dialog.addHelpButton(file)
dialog.addCancelButton(file, x, y, w, h, caption)

Arguments

file The path to an HTML help file. The path must be relative to the ShareScript

directory and specify a file with an “.html” extension.

x, y The x and y position of the button (in dialog units). –1 for default position.

W, h The width and height of the button (in dialog units). –1 for default size.

caption The label for the button (string). Default is “Help”.

Description

addHelpButton() adds a Help button to the dialog. Unlike other buttons, a Help button does

not terminate the dialog, but will instead show a specified HTML file in the user’s web-

browser. Normally you can call this method without any parameters to create a correctly

labelled and positioned button. You can only add a single Help button to a dialog.

Where possible, you should use the same file name for both your column/indicator script and

the associated help file. You should also use the getScriptPath() function to build the full

filename, so your script can continue to work if a user moves the script and associated help

file to a subdirectory.

Examples

The first example below uses an explicit path to the help file. However, this will stop working

if the user organises their scripts by moving the script and help file to a subfolder. The second

example will continue to work.

dlg.addHelpButton("Columns/MyHelp.html");

dlg.addHelpButton(getScriptPath() + "MyHelp.html");

See Also
getScriptPath()

Dialog.addIntEdit()/Dialog.addNumEdit()

add an edit box control for numerical input to a dialog

Synopsis
dialog.addIntEdit(name, x, y, w, h)
dialog.addIntEdit(name, x, y, w, h, leftLabel, rightLabel, val, min, max)

Global Functions and Objects Reference

ShareScript Language Reference 25

dialog.addNumEdit(name, x, y, w, h)
dialog.addNumEdit(name, x, y, w, h, leftLabel, rightLabel, val, min, max)

Arguments

name The control’s name (string).

x, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control (in dialog units). –1 for default size.

leftLabel Optional. A label to be placed to the left of the control (string).

rightLabel Optional. A label to be placed to the right of the control (string).

val Optional. A number specifying the initial value of the edit box. (If not

specified, this defaults to 0).

min Optional. A number specifying the minimum acceptable value of the edit box.

(If not specified, this defaults to 0).

max Optional. A number specifying the maximum acceptable value of the edit box.

(If not specified, this defaults to 1000).

Description

addIntEdit() and addNumEdit() add edit box controls to the dialog allowing the user to

specify a numerical parameter. Use addIntEdit() to add a control that will only accept

integers (whole numbers). To allow any number to be accepted use addNumEdit(). The name

of the control should uniquely identify the control, so the value can be retrieved by

Dialog.getValue().

Note that the minimum and maximum values are only enforced when the user clicks the Ok

button (or a user-defined button). If the user clicks Cancel or closes the dialog, the values

obtained by Dialog.getValue() will be the last value of the control, which could be outside

the range specified.

Example

This shows an integer only edit box control being added to a dialog. The edit box defaults to a

value of 7, with minimum and maximum values of 2 and 14.

var dlg = new Dialog("example",180,30);
dlg.addIntEdit("period", -1,-1,-1,-1, "Signal Period", "days", period, 2, 14);

See Also
Dialog.addTextEdit()

Dialog.addOkButton()

add an Ok button to a dialog

Synopsis
dialog.addOkButton()
dialog.addOkButton(x, y, w, h, caption)

Arguments

x, y The x and y position of the button (in dialog units). –1 for default position.

W, h The width and height of the button (in dialog units). –1 for default size.

caption The label for the button (string). Default is “Ok”.

Global Functions and Objects Reference

ShareScript Language Reference 26

Description

addOkButton() adds an Ok button to the dialog. If the user clicks this button to terminate the

dialog, Dialog.show() will return Dialog.Ok. Normally you can call this method without any

parameters to create a correctly labelled and positioned button. You can only add a single Ok

button to a dialog.

When the Ok button is clicked, the dialog will alert the user if any control values are outside

the range allowed. Input focus is transferred to the offending value, and the user has the

chance to correct the mistake.

Dialog.addSharePicker()

add a “Find a share” control to a dialog

Synopsis
dialog.addSharePicker(name, x, y, w, h)
dialog.addSharePicker(name, x, y, w, h, leftLabel, rightLabel, val)

Arguments

name The control’s name (string).

X, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control (in dialog units). –1 for default size.

leftLabel Optional. A label to be placed to the left of the control (string).

rightLabel Optional. A label to be placed to the right of the control (string).

val Optional. The initial instrument shown by the button (Share object). If not

specified, the default is the FTSE100 index (UKI:UKX).

Description

addSharePicker() adds a share picker control to the dialog. This is a button that can be

clicked to invoke the “Find a share” dialog. The button displays the exchange and epic of the

currently chosen share. The name of the control should uniquely identify the control, so the

value can be retrieved by Dialog.getValue().

The “Find a share” dialog defaults to showing the same instrument list (e.g. the ALL list) that

was selected the previous time the find dialog was invoked. However the user can select any

list from the dropdown menu. If you want to restrict the type of instrument that can be

selected, then you can check the instrument after the dialog is dismissed, and redisplay the

dialog if necessary (see the example below).

Example

This shows a share picker being added to a dialog. The picker defaults to the FTSE All-share

index. The dialog is shown again if an index isn’t selected (unless the user cancels the dialog).

var benchmark = getShare(“UKI:ASX”);
var dlg, ret;
do {

dlg = new Dialog("Select an index",180,50);
dlg.addOkButton();
dlg.addCancelButton();
dlg.addSharePicker("bench", -1, -1, -1, -1, "Benchmark:", "", benchmark);
ret = dlg.show();
benchmark = dlg.getValue("bench");

}
while (ret == Dialog.Ok && benchmark.getType() != “Index”)

Global Functions and Objects Reference

ShareScript Language Reference 27

Dialog.addText()

add text to the dialog

Synopsis
dialog.addText(x, y, w, h, text)

Arguments

x, y The x and y position of the control (in dialog units).

W, h The width and height of the control (in dialog units).

text The text (string) to be displayed inside the defined rectangle.

Description

addText() allows you to add text anywhere on a dialog. You can use this to give help or

instructions to the user.

Unlike a normal control, it does not take a name as a parameter since the user cannot interact

with this control, and hence it has no value to return through Dialog.getValue().

Text is displayed left-justified, and will automatically be laid out across multiple lines (with

word breaks). Any text that would extend beyond the bottom of the rectangle is not displayed.

There is normally no need to use this method to label individual controls, since each control

can have its own left and right hand side labels.

Dialog.addTextEdit()

add an edit box control to a dialog

Synopsis
dialog.addTextEdit(name, x, y, w, h)
dialog.addTextEdit(name, x, y, w, h, leftLabel, rightLabel, val)

Arguments

name The control’s name (string).

x, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control (in dialog units). –1 for default size.

leftLabel Optional. A label to be placed to the left of the control (string).

rightLabel Optional. A label to be placed to the right of the control (string).

val Optional. A string specifying the initial contents of the box. (If not specified,

the edit box will be empty).

Description

addTextEdit() adds an edit box to the dialog. This edit box control can accept any input, with

a maximum length of 512 characters (this limit was 80 in earlier versions of ShareScript). The

name of the control should uniquely identify the control, so the value can be retrieved by

Dialog.getValue().

See Also

Dialog.addIntEdit(), Dialog.addNumEdit()

Global Functions and Objects Reference

ShareScript Language Reference 28

Dialog.addTickBox()

add a tick�box control to a dialog

Synopsis
dialog.addTickBox(name, x, y, w, h)
dialog.addTickBox(name, x, y, w, h, text, val)

Arguments

name The control’s name (string).

x, y The x and y position of the control (in dialog units). –1 for default position.

W, h The width and height of the control including the text (in dialog units). –1 for

default size.

text The text displayed to the right of the control (string).

val Optional. A boolean value specifying the initial state of the box. (If not

specified, this defaults to false i.e. not ticked).

Description

addTickBox() adds a tick-box control to the dialog. This allows you to ask the user to make an

on/off decision. The name of the control should uniquely identify the control, so the value can

be retrieved by Dialog.getValue().

Note that unlike many of the other controls, the tick-box does not have separate left and right

labels. Instead, the text (displayed to the right) is considered an integral part of this control,

and is included within the control’s width.

Dialog.getValue()

get a control’s value from the dialog

Synopsis
dialog.getValue(name)

Arguments

name The control’s name (string).

Returns

The value of the control. The returned type varies by control (see below for details).

Throws

RangeError If an invalid field is requested.

Description

getValue() can be called after Dialog.show() to retrieve the user-specified value of a control.

Note that values are guaranteed to be within their specified ranges when Dialog.show()

returns any value except Dialog.Cancel.

The return type of getValue() depends on the type of control for which a value is requested.

The table below shows the return type for each control:

Control Return type for getValue()

Global Functions and Objects Reference

ShareScript Language Reference 29

Tick-box Boolean. true = ticked, false = unticked

Drop-list Number. 0 is the first item, 1 the second, etc.

Numeric edit boxes Number.

Text edit box String.

Colour picker Number.

Colour/Line picker Object. Has colour, pen & width fields (all Numbers).

Date picker A Javascript Date object.

Share picker A Share object.

Dialog.show()

presents the dialog to the user and blocks until the dialog is dismissed

Synopsis
dialog.show()

Returns

A number indicating whether the user clicked Ok or Cancel (or a user-defined button).

Throws

Error If Alpha blocks presentation of the dialog.

Description

show() will display the dialog to the user, and will not return until the user has finished

interacting with the dialog. The return value can be compared to the static constants

Dialog.Ok, Dialog.Cancel and Dialog.User.

The call to show() may throw an exception if Alpha blocks presentation of the dialog. Alpha

will do this to prevent dialogs being shown at inappropriate times.

Dialogs may be shown from scripts run from the console, and usually from the init() method

of a ShareScript column or indicator (when the init() status is Adding or Editing). You

cannot show a dialog when the getVal() method is called on a column, nor when the

getGraph() method is called on an indicator.

File ShareScript v1.1

allows reading and writing of text files to disk Object�File

Constructor
new File()
new File(filename)
new File(filename, mode)

With no arguments, the File() constructor creates a File object that you can use to open a

file on disk for reading or writing. Once you have created the File object in this way, you can

then use its open() method to associate it with a particular file.

Alternatively, you can pass a filename (and, optionally, a mode) to the constructor to

construct the File object and open a file in one operation. If only the filename is specified, the

file will be opened for reading only.

Global Functions and Objects Reference

ShareScript Language Reference 30

Arguments

filename Optional. The name of the file to open.

mode Optional. The mode used to open the file. This should be one of the static

constants defined on the File object (e.g. File.ReadMode). See below for the

possible values. If no mode is given, the file will be opened for reading only.

Throws

RangeError If an invalid filename or mode was specified.

Constants

The following static constants can be used to specify the mode to open the file.

ReadMode Open the file for reading only. It must exist.

WriteMode Open the file for writing. If the file does not exist, it will be created.

An existing file (if present) will be overwritten.

AppendMode Any output will be appended to an existing file (if present). If the

file does not exist, it will be created.

Methods

The following methods are defined on the File object. These functions are documented fully

in the pages that follow.

open() Opens a file.

close() Closes a file.

readLine() Read a line of text from the file.

writeLine() Write a line of text to the file.

Description

The File object provides access to reading and writing text files. A File object can be

associated with a particular file on the disk by calling the open() method, or by passing a

filename to the constructor. You should call close() when you have finished reading from or

writing to the file. You can then reuse the File object to open another file if you wish. Note

that if you forget to close a file, this will be done for you when the File object is garbage

collected.

You can read files from anywhere in the ShareScript directory. However, you can only

write to the ShareScript/Output directory.

If the filename does not begin with a slash (e.g. “test.csv”) it will be read/written relative to

the ShareScript/Output directory. If the filename does begin with a slash (e.g.

“/Columns/test.csv”) it will be read/written relative to the ShareScript directory. You can use

either forward (/) or back (\) slash characters to separate elements of the path. However,

backslashes need to be escaped in strings (“\\”).

If you wish to read a file (e.g. a CSV file) that sits in the same directory as your script, you

should use getScriptPath() to make sure the script can continue to find the file, even if the

user moves the script and associatied files to subfolder (see last example below).

Examples

Creates a file called “test.txt” (in the ShareScript Output folder) and writes some text to it:

var f = new File();

Global Functions and Objects Reference

ShareScript Language Reference 31

f.open("test.txt", File.WriteMode);
f.writeLine("Hello world.");
f.close();

This second example reads the first line of the file, this time showing the alternative method

where we open the file direct from the constructor:

var f = new File("test.txt", File.ReadMode);
var str = f.readLine();
f.close();

This final example shows how to open a CSV data file that is in the same directory as the

script itself:

var f = new File(getScriptPath() + "data.csv", File.ReadMode);

See Also
getScriptPath()

File.open()

open a file for reading, writing or appending

Synopsis
file.open(filename)
file.open(filename, mode)

Arguments

filename The name of the file to open.

mode Optional. The mode used to open the file. This should be one of the static

constants defined on the File object (e.g. File.ReadMode). See above for the

possible values. If no mode is given, the file will be opened for reading only.

Throws

Error If the File object already has an open file.

RangeError If an invalid filename or mode was specified.

Description

open() associates the File object with a particular file on disk, and opens the file for reading,

writing or appending (depending on the mode specified). The file must be closed before

open() can be called again.

See Also
getScriptPath()

File.close()

closes the file

Synopsis
file.close()

Global Functions and Objects Reference

ShareScript Language Reference 32

Throws

Error If the File object has no open file.

Description

Use close() when you have finished reading from or writing to a file.

File.readLine()

read a complete line of text from the file

Synopsis
file.readLine()

Returns

A string with the next complete line read from the file (with CR/LF characters removed). The

function will return undefined if the end of the file has been reached.

Throws

Error If the File object has no open file, or if there was an error reading from the

file.

Description

readLine() reads a line of text from a file, starting at the beginning (when the file has just

been opened). Each call to readLine() will return the next complete line of the file until the

end of the file is reached, at which point undefined will be returned.

A line is defined as being zero or more characters terminated by a line-feed. Note that the

maximum length of a line is 1024 characters.

Example

This example prints out each line of a file called “test.txt”:

var f = new File("test.txt"); // default mode is File.ModeRead
while (str = f.readLine())
{
 print(str);
}
f.close()

File.writeLine()

write a line of text to the file

Synopsis
file.writeLine()
file.writeLine(s)

Arguments

s An (optional) string to write to the file.

Throws

Error If the File object has no open file, or if there was an error writing to the file.

Global Functions and Objects Reference

ShareScript Language Reference 33

Description

writeLine() writes the specified text to the file. The file must have been opened in write or

append mode. A line-feed character is automatically appended to the text. If no argument is

passed to writeLine() it will add an empty line to the file.

getList()

get an array of Share objects corresponding to one of Alpha’s built�in lists

Synopsis
getList(listID)

Arguments

listID A value specifying the list. Possible values are defined as static constants by

the List object.

Returns

An array of Share objects that belong to the requested list.

Throws

RangeError If an invalid listID was specified.

Description

getList() is a global function that returns an array of Share objects corresponding to one of

Alpha’s built-in lists (e.g. the FTSE 100 list). The possible lists that can be requested are

defined as static constants by the List object.

Example
var ftse100 = getList(List.FTSE100);

See Also

List, getShare(), Share.getAssocShares(), Share.getSectorIndex(), getPortfolio()

getPortfolio()

get an array of Share objects corresponding to a portfolio

Synopsis
getPortfolio(s)

Arguments

s A string specifying the name of a user-portfolio.

Returns

An array of Share objects that belong to the requested portfolio.

Throws

RangeError If the portfolio does not exist.

Global Functions and Objects Reference

ShareScript Language Reference 34

Description

getPortfolio() is a global function that returns an array of Share objects corresponding to a

Alpha user-portfolio.

See Also

getShare(), Share.getAssocShares(), Share.getSectorIndex(), getList()

getPortfolioNames() ShareScript v1.1

returns the names of Alpha’s user portfolios

Synopsis
getPortfolioNames()
getPortfolioNames(groups)

Arguments

groups Optional boolean value. Specify true to include group portfolios (default) or

false to exclude them.

Returns

An array of strings. Each element is the name of a Alpha user portfolio.

Description

getPortfolioNames() is a global function that returns an array of strings providing the names

of Alpha’s user portfolios. A portfolio name returned by this function can be passed to

getPortfolio() to get the list of Share objects in the portfolio.

See Also
getPortfolio()

getScriptPath() ShareScript v1.3

returns the path of the calling script

Synopsis
getScriptPath()
getScriptPath(includeFilename)

Arguments

includeFilename Optional boolean value. Specify true to include the filename of the script,

false to exclude it (the default).

Returns

A string with the path of the calling script, relative to the ShareScript directory.

Description

getScriptPath() is a global function that returns the path of the script it was called from. The

filename of the script is not included by default, and the path ends in a trailing slash. The

filename is the script is appended if you pass true to the function.

getScriptPath() will return undefined if not called from a script (e.g. from the console).

Global Functions and Objects Reference

ShareScript Language Reference 35

Example

If called from a column script called MyCol.ss, you would get the following results from

getScriptPath():

getScriptPath() would return “/Columns/”

getScriptPath(true) would return “/Columns/MyCol.ss”

getShare()

get the Share object corresponding to a specified instrument

Synopsis
getShare(s)
getShare(AlphaID) ShareScript v1.1
getShare(AlphaID, shareNum) ShareScript v1.1

Arguments

s A string specifying the exchange and epic of the instrument. This should be of

the form EXCHANGE:EPIC. If EXCHANGE is not supplied, LSE is

assumed.

AlphaID The Alpha ID for the company.

ShareNum Optional share number. If not specified, the primary share is returned.

Returns

A Share object corresponding to the specified instrument.

Throws

RangeError If the specified instrument cannot be identified.

Description

getShare() is a global function that returns a reference to a Share object. This share object

can then be queried by calling one of its methods e.g. Share.getClose().

Examples
var lloy = getShare("LSE:LLOY");
lloy.getClose(); // returns the latest close for Lloyds TSB Plc

var hbos = getShare(3428);
hbos.getName(); // returns “HBOS PLC”

See Also

Share.getSectorIndex(), getList(), getPortfolio(), Share.getAssocShares(),
Share.getAlphaID(), Share.getShareNum()

getSSAccountNumber() ShareScript v1.2

returns the Alpha Account Number

Synopsis
getSSAccountNumber()

Global Functions and Objects Reference

ShareScript Language Reference 36

Returns

The account number as an integer

Description

getSSAccountNumber() is a global function that returns the user’s Alpha account number.

List

constants for access to Alpha’s built�in lists

Synopsis
List.constant

Constants
All

Shares

InvestmentTrusts

Indices

FTSE100

FTSE250

FTSESmallCap

FTSEFledgling

LSENonIndex

AIM

Warrant

Preference

Convertibles

Income

Capital

Other

Imports

FTSE350

UnitTrusts

TechMARK (TechMark – deprecated)

FT30

TechMARKFocus (TechMark100 – deprecated)

Gilts

Commodities

FX

FTActuaries ShareScript v1.3ShareScript v1.3ShareScript v1.3ShareScript v1.3

Bonds

ETFS

LSE

NASDAQ

NYSE

NYSEMKT (AMEX – deprecated)

Europe

US

UK

LSEShares

FTSE350SectorIndices ShareScriptShareScriptShareScriptShareScript v1.1v1.1v1.1v1.1

FTSEAllShare ShareScript v1.1ShareScript v1.1ShareScript v1.1ShareScript v1.1

CoveredWarrants ShareScript v1.1ShareScript v1.1ShareScript v1.1ShareScript v1.1

LSEFullyListed ShareScript v1.2ShareScript v1.2ShareScript v1.2ShareScript v1.2

IndexFutures ShareScript v1.2ShareScript v1.2ShareScript v1.2ShareScript v1.2

PlusMarkets ShareScript v1.3ShareScript v1.3ShareScript v1.3ShareScript v1.3

NASDAQ100 ShareScript v1.33ShareScript v1.33ShareScript v1.33ShareScript v1.33

DJ30 ShareScript v1.33ShareScript v1.33ShareScript v1.33ShareScript v1.33

USShares ShareScript v1.33ShareScript v1.33ShareScript v1.33ShareScript v1.33

AIM100 ShareScShareScShareScShareScript v1.35ript v1.35ript v1.35ript v1.35

AIMUK50 ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

AIMAllShare ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

IMASectorIndices ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

Description

List is a global object that defines constants that refer to Alpha’s built-in lists. These can be

used with the global getList() function as follows –

var ftse100 = getList(List.FTSE100);

Global Functions and Objects Reference

ShareScript Language Reference 37

List is not a class of objects like Date or MA, and there is no List() constructor. It can be

considered to be the same type of thing as the JavaScript Math object.

See Also
getList()

load()

load and execute a ShareScript file

Synopsis
load(s)

Arguments

s A string specifying the filename to load and execute, relative to the

ShareScript directory.

Description

load() is a global function that loads and executes a ShareScript file. Any variables and

functions contained in the file will become defined in the global object. load() is also a

property of the Column and Indicator objects, allowing you to load and define library

functions in specific objects, rather than globally.

Any ShareScript library files should be named with an “.ssl”, rather than a “.ss” file

extension. Future versions of Alpha may require this naming convention.

Example
load("libraries/myLib.ssl");

See Also

Column, Indicator, getScriptPath()

MA

provides access to a range of moving average calculations Object�MA

Constructor
new MA(period)
new MA(period, type)
new MA(period, type, values...)

Creates a moving average object with the period and type specified. If no type is specified, a

simple moving average is created.

You can fill the moving average buffer by passing one or more numbers (or arrays of

numbers) as the third parameter. If less values are specified than the MA period, then the first

value will be repeated to fill the start of the buffer. If no values are specified then the buffer is

empty and will be filled by the first call to getNext() with the same rules.

MA() may also be called as a function, without the new operator. When invoked in this way it

will return an average of the values passed as the third parameter.

Arguments

period An integer specifying the period.

Global Functions and Objects Reference

ShareScript Language Reference 38

type Optional. The type of moving average to create. This should be one of the

static constants defined on the MA object (e.g. MA.Exponential). See below

for the possible values. If no type is given, a simple moving average will be

created.

values... Optional. One or more numbers, or arrays of numbers. These are added to the

moving average from left to right. When a parameter is an array, elements are

processed from index 0 to index.length-1. When MA is used as a function (see

below), if no values are specified the function will return undefined.

Throws

RangeError If an invalid MA period or type is specified.

Constants

The following static constants can be used to specify the type of moving average in the

constructor. For example, the following statement: var ma1 = new MA(10, MA.Simple) would

create a 10 period simple moving average.

Simple Simple moving average.

Exponential Exponential moving average.

Weighted Weighted moving average.

Triangular Triangular moving average.

VariableVHF VHF form of exponential moving average.

VariableCMO A form of variable moving average based on the Chande

Momentum Oscillator.

Vidya Variable-Index Dynamic Average (VIDYA).

Methods

The following methods are used to get the current value of the MA, and to add new values to

the MA. These functions are documented fully in the pages that follow.

getValue() Return the current MA value.

getNext() Return the new MA value after adding new values to the buffer.

Description

The MA datatype allows you to create individual moving average objects, which maintain their

own buffers of values, and allow you to feed new values in and get a new average value out.

MA() can also be used as a function to return a one-off average of a set of values. In this case,

the values to average must be provided as the third parameter. Note that if you specify less

values than the period, the first value passed will be repeated to fill the buffer. If you specify

more values than the period, the earliest values will “fall out” the moving average (though

may still have an effect on the value e.g. if an exponential average is being calculated).

Examples

Using MA as a function:

MA(10, MA.Simple, [0,1,2,3,4,5,6,7,8,9]); � 4.5

MA(10, MA.Simple, 1,2); � 1.1

MA(10, MA.Simple, [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]); � 10.5

Global Functions and Objects Reference

ShareScript Language Reference 39

Note in the first example, we pass an array to initialise the buffer, and get back a simple

average of the ten values.

The second example shows an alternative way of passing values to initialise the buffer. In this

case, only 2 values are passed, so the buffer is filled by repeating the first value.

The third example shows how the earliest (leftmost) values are discarded from the buffer.

You can therefore pass the whole price history for an instrument to the MA function, and get

the current moving average value easily:

var prices = instrument.getCloseArray();
print(MA(60, MA.Exponential, prices));

When using MA as an object, you create a new moving average object, then add the values

one at a time, getting a new average out each time.

var sma = new MA(5, MA.Simple); // create a 5 period moving average
sma.getNext(1); // returns the new MA value of 1

The code above creates a 5 period simple moving average. The MA buffer is not initialised.

We then call getNext, passing a value of 1. Since the buffer is empty, and we have specified

fewer values than the period of 5, the buffer is filled by repeating the value we passed. The

MA buffer will now look like this:

1 1 1 1 1

sma.getNext(2); // returns the new MA value of 1.2

The next call to getNext passes a value of 2. This causes the left-most value to be discarded

from the buffer, and the new value of 2 is added at the right. The average is then calculated

and returned across the 5 new values in the buffer, which looks like this:

1 1 1 1 2

This fuller example below simply prints out a 10-period simple moving average value to the

console for the whole price history of an instrument.

var prices = instrument.getCloseArray();
var sma = new MA(10, MA.Simple);
for (var i=0; i<prices.length; i++)
{
 var val = sma.getNext(prices[i]);
 print(val);
}

MA.getNext()

add value(s) into a moving average, getting the new average value out

Synopsis
ma.getNext(values...)

Arguments

values... One or more numbers, or arrays of numbers. These are added to the moving

average buffer from left to right. When a parameter is an array, elements are

processed from index 0 to index.length-1.

Global Functions and Objects Reference

ShareScript Language Reference 40

Returns

A number giving the current MA value.

Description

getNext() returns a number which is the current value of a moving average object, after

adding one or more values to the moving average buffer.

MA.getValue()

get the current moving average value

Synopsis
ma.getValue()

Returns

A number giving the current MA value.

Description

getValue() returns a number which is the current value of the moving average object.

NativeLibrary ShareScript v1.2

allows a script to call functions in a DLL (native code library) Object�NativeLibrary

Constructor
new NativeLibrary(filename)

The NativeLibrary() constructor creates a NativeLibrary object which acts as an interface

between Alpha and a DLL file, allowing you to call native code functions in the DLL.

Arguments

filename The name of (or path to) the DLL file to open.

Throws

RangeError If the DLL file cannot be found.

Error If the script is not allowed to access DLL files.

Methods

The NativeLibrary object defines a single method to allow you to calls functions in the DLL.

call() Calls a function in the DLL.

Description

The NativeLibrary class allows you to call functions exported by a DLL. Access is disabled

by default, and must be specifically enabled by the user first.

A script can request the user to enable DLL access by including the following directive:

//@UsesDLL:Yes

If the user has not enabled DLL access, the NativeLibrary constructor will throw an

exception.

Global Functions and Objects Reference

ShareScript Language Reference 41

The calling convention of the called functions can either be the standard calling convention,

or the C calling convention (__stdcall or __cdecl). ShareScript can pass a (limited) range of

data types to the function, and can obtain the return value of the function. This is documented

below where the call() method is described in detail.

The library is opened when the constructor is called, and closed when the NativeLibrary

object goes out of scope and is garbage collected by the engine.

Alpha will look for the DLL specified by filename in both the main Alpha directory, and

system directories. Normally, you should place DLLs in your ShareScript libraries folder, or

alongside the script itself. The examples below show how to specify the DLL filename in both

these cases. You can use either forward (/) or back (\) slash characters to separate elements of

the path. However, backslashes need to be escaped in strings (“\\”).

Examples

The first example shows how to load a library that is located in your ShareScript libraries

folder:

var myLib = new NativeLibrary("ShareScript/Libraries/MyLib.DLL");

The next example shows how to load a library that is located in the same directory as your

script:

var myLib = new NativeLibrary("ShareScript" + getScriptPath() + "MyLib.DLL");

The last example uses a system DLL, calling the Win32 MessageBox function to display an

alert to the user, and returns the button clicked back to ShareScript:

var user32 = new NativeLibrary("user32.dll");
var ret = user32.call("MessageBoxA", "iiSSi", 0, "Message", "Title", 1);

See Also
getScriptPath()

NativeLibrary.call()

call a function in a DLL

Synopsis
nativeLibrary.call(funcName, argTypes, args....)

Arguments

funcName The name (a string) of the function to call in the DLL.

argTypes A string listing the argument and return types (see below).

args One or more values to pass to the DLL (optional).

Returns

The return value of the called function. This will be forced to the type specified by

argTypes[0].

Description

This method calls a function in the DLL wrapped by the NativeLibrary object. You must

specify the name of the function you want to call, and a string (argTypes) specifying the

return type and the type of each argument (if any) that you will pass to the function.

The first character of argTypes should be the return value of the function which should match

that of the C prototype of the function. The allowed values are:

Global Functions and Objects Reference

ShareScript Language Reference 42

Character for argTypes C Type

v void

i int

f float

Any subsequent characters in argTypes should be the type of each parameter you will pass to

the function (again matching the C prototype):

Character for argTypes C Type JavaScript Type you should pass

i int Number

f float Number

S char * String

I int * An array of Numbers

F float * An array of Numbers

Note that when you pass an array of numbers from ShareScript to your DLL, any

modifications made to the block of memory will be reflected back in the JavaScript array

when the function returns. This allows your native functions to modify data and pass it back

to ShareScript. This is illustrated in the example below.

Example

Suppose we have a C function that adds one to each element of an array of floats:

int _stdcall addone(float *p, int len) {
 for (int i = 0; i < len; i++)
 p[i]++;
 return 1;
}

You can call this function from ShareScript like this:

var myLib = new NativeLibrary("ShareScript\\Libraries\\MyLib.DLL");
var data = new Array(1.5, 2, 3);
myLib.call("addone", "iFi", data, data.length);
print(data); // will print 2.5, 3, 4

Pen

pen style constants

Synopsis
Pen.constant

Constants
Solid A solid pen.

Dash A dashed pen.

Dot A dotted pen.

DashDot A dash-dot pen.

DashDotDot A dash-dot-dot pen.

Global Functions and Objects Reference

ShareScript Language Reference 43

Description

Pen is an object that defines constants to create pens. Currently, its sole use is with Indicator

objects. Pen is not a class of objects like Date or MA, and there is no Pen() constructor. It can

be considered to be the same type of thing as the JavaScript Math object.

See Also

Indicator.setSeriesLineStyle(), Dialog.AddColLinePicker()

PriceData

represents an OHLCV bar Object�PriceData

Synopsis
PriceData.property

Construction

PriceData objects are returned by the getPrice() series of Share object methods, the

getWeekly/MonthlyBarArray() methods, the intraday getIBarArray() method, or are provided

to an Indicator’s getGraph() function. They cannot be created using the normal JavaScript

new() operator.

Properties
open The open price in the minor currency unit (e.g. Pence), or undefined if no

value is available.

high The high price in the minor currency unit (e.g. Pence), or undefined if no

value is available.

low The low price in the minor currency unit (e.g. Pence), or undefined if no value

is available.

close The close price in the minor currency unit (e.g. Pence), or undefined if no

value is available.

volume The volume, or undefined if no value is available.

adjustment The adjustment factor, or undefined if no value is available. This is always 1

for the most recent price. You can divide a price by the adjustment figure to

give the price as it was published on that day.

date The date/time (a JavaScript Date object), or undefined if no value is available.

dateNum An integer representation of the date (see below for details).

timeNum An integer representation of the time (secs since midnight). ShareScript v1.1

isOHLCV A boolean value (true or false) indicating whether the record is for a day

where Alpha has full OHLCV data. See below for further details.

Description

PriceData objects represent a single bar. They contain fields for Open, High, Low & Closing

prices, the volume during the period, and the date/time of the period-end. When obtained

from the getPrice() series of Share object methods, the period of the returned PriceData

record(s) is always one day.

Global Functions and Objects Reference

ShareScript Language Reference 44

The getWeeklyBarArray(), getMonthlyBarArray() and getIBarArray() Share object methods

return PriceData records with the requested periods (weekly, monthly, or a specified intraday

period e.g. 5 mins).

An array of PriceData objects is also passed by Alpha to the Indicator.getGraph() function.

In this case, the period will depend on the graph time or indicator time period selected by the

user when the indicator is added.

The dateNum & timeNum fields provides an integer representation of the date and time. This is

made available since JavaScript Date objects are relatively costly (in terms of execution

speed) to use and compare. You can use the ==, < and > operators to compare two dateNum

fields (lower dateNums are earlier in the calendar, equal dateNums represent the same day). If

you find yourself comparing dates between two streams of PriceData records, consider using

dateNum instead.

The isOHLCV field indicates whether Alpha has full OHLCV data for the instrument on the

date of the PriceData record. The Alpha database has closing price only data for some

instruments before a certain date – in this case the isOHLCV field will be false, and the open,

high and low values will be the same as the close value. Note that when the period of a

PriceData record is longer than one day (which can be the case for the price bars passed to a

ShareScript indicator, as discussed above), the isOHLCV field will always be true.

See Also

Indicator, dateNum(), timeNum(), Share.getPrice(), Share.getPriceOnDate(),
Share.getPriceArray(), Share.getPriceArrayDates(),Share.getIBarArray(),

Share.getWeeklyBarArray(), Share.getMonthlyBarArray(), Share.getCurrency()

print()

writes text to the console

Synopsis
print(s)

Arguments

s A string containing the text to be written.

Description

print() is a global function that writes text to the ShareScript console. The print() function

automatically generates a new line, but you can also use the “\n” sequence within the string to

produce a line-break and output multiple lines of text from one string. The console window

will also be shown if it is not currently visible.

See Also
clear()

RA

constants used to specify a Risk Analysis

Synopsis
RA.constant

Global Functions and Objects Reference

ShareScript Language Reference 45

Constants

Constant Risk Analysis Type

MeanReturn Mean Return on Investment %

DevReturns Deviation of Returns %

MeanActiveReturn Mean Active Return %

DevActiveReturns Deviation of Active Returns %

SharpeRatio Sharpe Ratio

SortinoRatio Sortino Ratio

RSquare R-Square

MSquare M-Square

Beta Beta

Alpha Alpha %

JensensAlpha Jensen’s Alpha % ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

Treynor Treynor Performance Index %

InfoRatio Information Ratio

Volatility Volatility %

Correlation Correlation

The following constants are defined to specify the periodTypeperiodTypeperiodTypeperiodType property:

Daily, Weekly, Monthly, Quarterly, SemiAnnually, Annually

The following constants are defined to specify the periodPriceperiodPriceperiodPriceperiodPrice property:

LastPrice, AveragePrice, TypicalPrice, WeightedPrice

Description

RA is a global object that defines constants that refer to the various types of risk analysis that

can be performed. It also defines two additional sets of constants for specifying the analysis

period length, and the means by which a price for the period is determined.

See Also
Share.getRiskAnalysis()

Result

constants to identify different company results

Synopsis
Result.constant

Constants

Constant Value returned by Share.getResult()Share.getResult()Share.getResult()Share.getResult() or Share.getResultArray()Share.getResultArray()Share.getResultArray()Share.getResultArray()

ResultType A number giving the result type (see the ResultType object).

Type A string giving the result type (e.g. “Forecast”).

Date A Date object giving the year end date.

Global Functions and Objects Reference

ShareScript Language Reference 46

Constant Value returned by Share.getResult()Share.getResult()Share.getResult()Share.getResult() or Share.getResultArray()Share.getResultArray()Share.getResultArray()Share.getResultArray()

Profit A number giving the profits (in millions).

EPS A number giving the EPS (in the minor currency unit). This value

will be the normalised figure if available, announced otherwise (see

ResultType).

Dividend A number giving the total dividend for the year, but excluding any

special dividends (in the minor currency unit).

Turnover A number giving the turnover (in millions).

ExDivDate A Date object giving the ex-dividend date.

DivPayDate A Date object giving the dividend pay date.

IsIFRS A boolean value indicating whether the result is IFRS.

Constant Value returned by Share.getResult()Share.getResult()Share.getResult()Share.getResult()

NormPreTax Normalised pre-tax profits (in millions).

NormPreTaxPS Normalised pre-tax profits per share. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NormPostTax Normalised post-tax profits. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NormEPS Normalised EPS (same as Result.EPS).

ReportedPreTax Reported pre-tax profits (same as Result.Profit).

ReportedPreTaxPS Reported pre-tax profits per share.

ReportedPostTax Reported post-tax profits.

ReportedEPS Reported EPS (same as deprecated ReportedPostTaxPS)

TurnoverPS Turnover per share.

Tax Tax paid.

BookValue Book value (NAV).

BookValuePS Book value per share.

TangibleBookValue Tangible book value (NTAV).

TangibleBookValuePS Tangible book value per share.

Cash Net cash.

CashPS Net cash per share.

CashFlow Net cash flow.

CashFlowPS Net cash flow per share.

Capex Capital expenditure.

CapexPS Capital expenditure per share.

RD R&D expenditure.

RDPS R&D expenditure per share.

Depreciation Depreciation of tangible assets.

ROCE Return on capital employed (ROCE).

ROE Return on equity (ROE).

Global Functions and Objects Reference

ShareScript Language Reference 47

Constant Value returned by Share.getResult()Share.getResult()Share.getResult()Share.getResult()

QuickRatio Quick ratio.

CurrentRatio Current ratio.

OperatingMargin Operating margin (OM).

InterestCover Interest cover.

InterestPaid Interest paid.

NetBorrowing Net borrowing.

NetCurrentAssets Net current assets.

NetGearing Net gearing (including intangibles).

NetGearingEx Net gearing (excluding intangibles).

CashPercent Cash % (including intangibles).

CashPercentEx Cash % (including intangibles).

GrossGearing Gross gearing (including intangibles).

GrossGearingEx Gross gearing (including intangibles).

GrossGearing5 Gross gearing under 5 years (including intangibles).

GrossGearing5Ex Gross gearing under 5 years (including intangibles).

GrossGearing1 Gross gearing under 1 year (including intangibles).

GrossGearing1Ex Gross gearing under 1 year (including intangibles).

OperatingProfit Operating profit (reported). ShareScript v1.3ShareScript v1.3ShareScript v1.3ShareScript v1.35555

GrossProfit Gross profit. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

TotalProfit Total post-tax profit from all ops (inc discontd) ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

TotalEPS Total post-tax EPS ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

DividendYield Dividend yield (price at year end). ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

GrossMargin Gross margin %. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

CostOfSales Cost of goods sold. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

FreeCashFlow Free cash flow. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

OperatingCashFlow Operating cash flow. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

EBIT Reported EBIT. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

EBITDA Reported EBITDA. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NormEBIT Normalised EBIT. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NormEBITDA Normalised EBITDA. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

RetainedProfit Retained proft. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NumEmployees Number of employees. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

EnterpriseValue Enterprise value. ShareSShareSShareSShareScript v1.35cript v1.35cript v1.35cript v1.35

CurrentAssets Current assets. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

Global Functions and Objects Reference

ShareScript Language Reference 48

Constant Value returned by Share.getResult()Share.getResult()Share.getResult()Share.getResult()

TotalAssets Total assests. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

CurrentLiabilities Current liabilities. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

TotalLiabilities Total liabilities. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

TotalExpenses Total expenses. SharSharSharShareScript v1.35eScript v1.35eScript v1.35eScript v1.35

AdminExpenses Administrative expenses. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NumShares Number of shares at year end. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NumSharesAv Average number of shares across year. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

DebtToCapital Debt to capital. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

DebtToEquity Debt to equity. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

EarningsYield Earnings yield. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

DividendCover Dividend cover. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

ROA Return on assets/investment. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

ROCI Return on capital invested. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

CROCI Cash return on capital invested. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

AltmanZScore Altman Z-score. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

GreenblattRank Greenlatt magic formula rank. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

GrahamNumber Graham Number. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

NeffTRR John Neff’s total return ratio. ShareScripShareScripShareScripShareScript v1.35t v1.35t v1.35t v1.35

PiotroskiFScore Piotroski F-score. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

WorkingCapital Current assets minus current liabilities ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

Minorities Share of profits owned by non-controlling ints. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

TotalEquity Total assets minus total liabilities (or NAV+min) ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

Description

Result is a global object that defines constants that refer to the various company results in

Alpha’s database. These can be used with the Share object methods getResult() and

getResultArray() functions as follows –

var profit = my_share.getResult(0, Result.Profit);

Note that getResultArray() only accepts the first set of constants, not the second.

Result is not a class of objects like Date or MA, and there is no Result() constructor. It can be

considered to be the same type of thing as the JavaScript Math object.

See Also

ResultType, Share.getResult(), Share.getResultArray()

Global Functions and Objects Reference

ShareScript Language Reference 49

ResultType

constants to identify the different types of company results

Synopsis
ResultType.constant

Constants
Announced Result has been announced but is not yet normalised.

Final Result is has been normalised.

Forecast Forecast result.

Q1 Quarter 1 result.

Interim Interim (or Quarter 2) result.

Q3 Quarter 3 result.

Special Special Dividend result.

Description

ResultType is a global object that defines constants that refer to the various types of company

results in Alpha’s database. These are used to identify the return values from the Share object

methods getResult() and getResultArray() functions when Result.ResultType is requested.

These constants allow you to check result types numerically, rather than having to compare

the strings returned by Result.Type.

Note that only the first 3 values (Announced, Final & Forecast) can be returned by

getResult() since the other types are not year-end results. These other types are returned

when the complete set of results for the year is requested using getResultArray().

See Also

Result, Share.getResult(), Share.getResultArray()

Share

represents a Alpha instrument Object�Share

Construction

Because Share objects represent the individual underlying Alpha instruments, they are finite

in number and are not created using the normal JavaScript new() operator. Instead you can use

the global getShare() function to retrieve a Share object for a specific instrument.

Methods

Share objects have no properties, but instead have a number of different methods that allow

you to retrieve information about the underlying Alpha instrument. These methods are listed

below, and documented fully on the following pages.

Note that since some companies possess multiple instruments, some methods return

information about the instrument itself (e.g. getShareName() might return “10p ord”). Other

methods return information about the company that the instrument belongs to (e.g. getName()

might return “Lloyds TSB Plc”).

Global Functions and Objects Reference

ShareScript Language Reference 50

getActivities() Get a brief description of the company’s activities.
 ShareScript v1.32

getFullActivities() Get a full description of the company’s activities.
 ShareScript v1.32

getAssocShares() Get an array of all Share objects belonging to the same

company.

getCap() Get the market capitalisation the company.

getClose() Get a single closing price for the instrument.

getCloseArray() Get an array of closing prices for the instrument.

getCloseArrayDates() Get an array of closing prices for the instrument between two

dates.

getCloseOnDate() Get a single closing price for the instrument on a specific date.

getCurrency() Get the price currency of the instrument.

getCurrencyR() Get the result reporting currency for the company.

getEMS() Get the exchange market size (EMS) for the instrument.

Replaces NMS. ShareScript v1.32

getEPIC() Get the instrument’s EPIC code.

getHigh() Get a single day’s high price for the instrument.

getHighOnDate() Get a single day’s high price for the instrument on a specific

date.

getIndices() Get the index membership of the company.

getIndustry() Get the industry of the company.

getISIN() Get the instrument’s ISIN. ShareScript v1.2

getIBarArray() Get intraday OHLCV bars. ShareScript v1.1

getIBarArrayOnDate() Get intraday OHLCV bars for a specific date. ShareScript v1.1

getIBid() Get the latest intraday bid price. ShareScript v1.1

getIBidOfferArray() Get an array of intraday Bid/Offer records. ShareScript v1.1

getIBidOfferArrayOnDate() Get an array of intraday Bid/Offer records for a specific date.

 ShareScript v1.1

getIClose() Get an intraday close price. ShareScript v1.1

getIDate() Get the date of intraday data. ShareScript v1.1

getIDateNum() Get the date (as a dateNum) of intraday data. ShareScript v1.1

getIMid() Get the latest intraday mid price. ShareScript v1.1

getIMidHigh() Get the intraday mid high price. ShareScript v1.3

getIMidLow() Get the intraday mid low price. ShareScript v1.3

GetIOffer() Get the latest intraday offer price. ShareScript v1.1

getIOpen() Get an intraday open price. ShareScript v1.1

getITradeArray() Get an array of intraday trade records. ShareScript v1.1

Global Functions and Objects Reference

ShareScript Language Reference 51

getITradeArrayOnDate() Get an array of intraday trade records for a specific date.

 ShareScript v1.1

getITradeHigh() Get the intraday trade high price. ShareScript v1.3

getITradeLow() Get the intraday trade low price. ShareScript v1.3

getListing() Get LSE instrument’s listing (Full or AIM). ShareScript v1.3

getLow() Get a single day’s low price for the instrument.

getLowOnDate() Get a single day’s low price for the instrument on a specific

date.

getMarket() Get Alpha’s exchange (or market) code for the instrument.

getMarketOpenTime() Get the market open time for the instrument. ShareScript v1.1

getMarketCloseTime() Get the market close time for the instrument. ShareScript v1.1

getMarketOffsetGMT() Get the market offset from GMT. ShareScript v1.1

getMonthlyBarArray() Get monthly OHLCV bars for the instrument. ShareScript v1.2

getName() Get the full name of a company or instrument.

getNotes() Get the share’s notes column values. ShareScript v1.1

getNMS() Get the normal market size (NMS) for the instrument.

getNumShares() Get the number of shares.

getOpen() Get a single opening price for the instrument.

getOpenOnDate() Get a single opening price for the instrument on a specific

date.

getPrice() Get a single OHLCV price record for the instrument.

getPriceArray() Get an array of OHLCV price records for the instrument.

getPriceArrayDates() Get an array of OHLCV price records for the instrument

between two dates.

getPriceOnDate() Get a single OHLCV price record for the instrument on a

specific date.

getResult() Provides basic access to the company’s historic and forecast

results.

getResultArray() Provides advanced access to the company’s historic and

forecast results.

getRiskAnalysis() Provides access to the Risk Analysis metrics for the

instrument. ShareScript v1.31

getSector() Get the sector of the company.

getSectorIndex() Get a Share object corresponding to the sector index for the

company.

getSEDOL() Get the instrument’s SEDOL. ShareScript v1.3

getShareName() Get the name of the instrument.

getShareNum() Get the share number for the instrument. ShareScript v1.1

getAlphaID() Get the Alpha ID for the instrument. ShareScript v1.1

getSubSector() Get the sub-sector of the company.

Global Functions and Objects Reference

ShareScript Language Reference 52

getSuperSector() Get the super-sector of the company. ShareScript v1.3

getType() Get the type of the instrument.

getTradingSystem() Get the instrument’s LSE trading system. ShareScript v1.3

getUncrossingPrice() Get the indicative auction uncrossing price. Only valid if the

share is in an intraday auction, and there is a valid uncrossing

price. ShareScript v1.34

getVolume() Get a single day’s volume for the instrument.

getVolumeOnDate() Get a single day’s volume for the instrument on a specific date.

getWeeklyBarArray() Get weekly OHLCV bars for the instrument. ShareScript v1.2

isInAuction() Returns true if share is in intraday auction. ShareScript v1.34

isSuspended() Returns true if a company’s shares are suspended.

Description

Every Alpha instrument has a corresponding ShareScript Share object. You can obtain a

reference to a specific Share object using the getShare() function. There are also a number of

other functions that return either individual Share objects, or arrays of Share objects.

Often, you will receive a reference to a Share object when Alpha passes one to specific

functions you define on Column and Indicator objects.

Note that you can compare Share object references with the equality operator, which returns

true if the underlying instrument is the same (since both references will be to the same Share

object).

Once you have a Share object, you can get information about the instrument (e.g. company

results, price history) by using one of the many Share object methods.

Example

This simple example requests an instrument from its EPIC, then gets the name (a string) of

the company that the instrument belongs to.

var my_share = getShare("LSE:LLOY");
var name = my_share.getName();

Share.getActivities() ShareScript v1.32

get a short description of the company’s activities

Synopsis
share.getActivities()

Returns

A string which describes the activities of the company. E.g. “Provider of communications

services”. An empty string is returned if Alpha does not have information for the instrument.

Example
var vod = getShare("LSE:VOD");
print(vod.getActivities());

See Also

Share.getFullActivities(), Share.getSector()

Global Functions and Objects Reference

ShareScript Language Reference 53

Share.getFullActivities() ShareScript v1.32

get a detailed description of the company’s activities

Synopsis
share.getFullActivities()

Returns

A string which describes the full activities of the company. The returned string may be very

long and does not contain line breaks. An empty string is returned if Alpha does not have

information for the instrument.

See Also

Share.getActivities(), Share.getSector()

Share.getAssocShares()

get an array of all Share objects belonging to the same company

Synopsis
share.getAssocShares()

Returns

An array of Share objects, all of which belong to the same company as share, the instrument

on which this method was called. Note that share will be included in the returned array.

Description

getAssocShares() is a Share object method. It returns an array containing the full set of

instruments belonging to the same company as the Share object on which the method is

called. If the company has e.g. only a single ordinary share, then the Share object itself will be

the sole element of the returned array. The first element of the array is always the company’s

primary ordinary share.

Example
var my_share = getShare("LSE:HBOS");
var list = my_share.getAssocShares(); // returns an array of 5 Share objects
list[0].getShareName(); // 25p Ords
list[1].getShareName(); // 6.475% Non-Cumulative Preference £1

See Also

Share.getSectorIndex(), getShare(), getList(), getPortfolio(), Share.getShareNum()

Share.getCap()

get the market capitalisation the company

Synopsis
share.getCap()

Returns

A number giving the market capitalisation of the company (in Millions). The currency of this

value can be obtained from Share.getCurrency().

Global Functions and Objects Reference

ShareScript Language Reference 54

See Also

Share.getCurrency(), Share.getNumShares()

Share.getClose()

get a single closing price for the instrument

Synopsis
share.getClose()
share.getClose(daysAgo)

Arguments

daysAgo An optional integer specifying the number of trading days ago that you want

to get a closing price for (0 is the most recent close, 1 is yesterday, etc).

Returns

A number giving the closing price of the instrument in the minor currency unit. Undefined can

be returned if a price is not available (e.g. the requested day lies before the start of the

instrument’s price history).

Description

getClose() is a Share object method that returns the requested day’s closing price. If the

daysAgo parameter is not specified, getClose() returns the most recent close. If you require a

full OHLCV record, consider using Share.getPrice() instead.

If you require closing prices across many days, consider using Share.getCloseArray().

See Also

Share.getCloseArray(), Share.getCloseOnDate(), Share.getCloseArrayDates(),
Share.getOpen(), Share.getHigh(), Share.getLow(), Share.getVolume(), Share.getPrice(),
Share.getCurrency()

Share.getCloseArray()

get an array of closing prices for the instrument

Synopsis
share.getCloseArray()
share.getCloseArray(num)

Arguments

num An optional integer specifying the number of prices required. e.g. 10 will

return the most recent 10 closing prices.

Returns

An array of numbers giving the closing price on each of the days requested. The oldest record

is first (array element 0). If more days are requested than are available in the price history, the

length of the array may be shorter than num.

Global Functions and Objects Reference

ShareScript Language Reference 55

Description

getCloseArray() is a Share object method that returns multiple closing prices from the

history. If the optional num parameter is not used, the entire closing price history is returned.

The oldest price is at array[0]. The most recent price will be at array[array.length-1].

See Also

Share.getPriceArray(), Share.getCloseArrayDates(), Share.getClose(),

Share.getCloseOnDate(), Share.getCurrency()

Share.getCloseArrayDates()

get an array of closing prices for the instrument between two dates

Synopsis
share.getCloseArrayDates()
share.getCloseArrayDates(start)
share.getCloseArrayDates(start, end)

Arguments

start An optional JavaScript Date object specifying the date on which to start

returning prices. If not specified, the start of the history is used.

end An optional JavaScript Date object specifying the date on which to stop

returning prices. If not specified, the end of the history is used.

Returns

An array of numbers giving the closing price on each of the days between the start and end

dates (inclusive). The oldest record is first (array element 0). Records will not be returned for

dates on which trading did not take place (e.g. weekends and holidays). The length of the

array may be zero if no records match the criteria.

Description

getCloseArrayDates() is a Share object method that returns multiple closing prices from the

history. If the end date is not specifed, the end of the history is assumed. If the start date is

not specified, the start of the history is assumed. The oldest price is at array[0]. The most

recent price will be at array[array.length-1].

See Also

Share.getCloseArray(), Share.getCloseOnDate(), Share.getClose(),

Share.getPriceArrayDates(), Share.getCurrency()

Share.getCloseOnDate()

get a single closing price for the instrument on a specific date

Synopsis
share.getCloseOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date on

which to return the closing price.

Global Functions and Objects Reference

ShareScript Language Reference 56

Returns

A number giving the closing price of the instrument in the minor currency unit. Undefined can

be returned if the requested date lies outside of the instrument’s history.

Description

getCloseOnDate() is a Share object method that returns the requested day’s closing price. If

date falls on a holiday or weekend, then the price on the preceding trading day will be

returned.

If you require closing prices across many days, consider using Share.getCloseArray().

Example
var close = my_share.getCloseOnDate(new Date(2007, 5, 13));

See Also

getClose(), getCloseArray(), getCloseArrayDates(), getOpenOnDate(), getHighOnDate(),

getLowOnDate(), getVolumeOnDate(), getPriceOnDate(), getCurrency()

Share.getCurrency()

get the price currency of the instrument

Synopsis
share.getCurrency()

Returns

A string giving the ISO code for the currency of the instrument’s price. Note that the code is

for the major currency unit, while prices are always expressed in the minor unit.

See Also
Share.getCurrencyR()

Share.getCurrencyR()

get the result reporting currency for the company

Synopsis
share.getCurrencyR()

Returns

A string giving the ISO code for the currency of the company’s results.

See Also
Share.getCurrency()

Share.getEMS() ShareScript v1.32

get the exchange market size (EMS) for the instrument

Synopsis
share.getEMS()

Global Functions and Objects Reference

ShareScript Language Reference 57

Returns

A number giving the exchange market size for the instrument (the unit is shares). This

information is only available for a company’s primary share. Note that EMS is equivalent to

the old NMS and this method should be used in place of Share.getNMS().

See Also
Share.getAssocShares()

Share.getEPIC()

get the instrument’s EPIC code

Synopsis
share.getEPIC()

Returns

A string giving the EPIC code of the instrument.

See Also

Share.getName(), Share.getMarket()

Share.getHigh()

get a single day’s high price for the instrument

Synopsis
share.getHigh()
share.getHigh(daysAgo)

Arguments

daysAgo An optional integer specifying the number of trading days ago that you want

to get the day’s high price for (0 is the most recent high, 1 is yesterday, etc).

Returns

A number giving the high price of the instrument in the minor currency unit. Undefined can

be returned if a price is not available (e.g. the requested day lies before the start of the

instrument’s price history).

Description

getHigh() is a Share object method that returns the requested day’s high price. If the daysAgo

parameter is not specified, getHigh() returns the most recent day’s high. If you require a full

OHLCV record for an instrument, consider using Share.getPrice() instead.

See Also

Share.getHighOnDate(), Share.getClose(), Share.getOpen(), Share.getLow(),

Share.getVolume(), Share.getPrice(), Share.getCurrency()

Global Functions and Objects Reference

ShareScript Language Reference 58

Share.getHighOnDate()

get a single day’s high price for the instrument on a specific date

Synopsis
share.getHighOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date on which

to return the day’s high price.

Returns

A number giving the high price of the instrument in the minor currency unit. Undefined can

be returned if the requested date lies outside of the instrument’s history.

Description

getHighOnDate() is a Share object method that returns the requested day’s high price for an

instrument. If date falls on a holiday or weekend, then the price on the preceding trading day

will be returned.

See Also

Share.getHigh(), Share.getCloseOnDate(), Share.getOpenOnDate(), Share.getLowOnDate(),

Share.getVolumeOnDate(), Share.getPriceOnDate(), Share.getCurrency()

Share.getIndices()

get the index membership of the company

Synopsis
share.getIndices()

Returns

An array of strings with the names of the indices to which the company belongs. An empty

array will be returned if the company belongs to no indices.

Description

getIndices() is a Share object method that returns the index membership of the company to

which the Share object belongs.

The possible strings returned are – "FT 30", "FTSE 100", "FTSE 250", "FTSE 350", "FTSE

SmallCap", "FTSE All-Share", "FTSE Fledgling", "FTSE All-Small", "techMark", "techMark

100", "techMark mediscience", "DJ 30", "NASDAQ 100".

See Also

Share.getSectorIndex(), getList()

Share.getIndustry()

get the industry of the company

Synopsis
share.getIndustry()

Global Functions and Objects Reference

ShareScript Language Reference 59

Returns

A string which gives the industry that the company is engaged in (e.g. “Financials”).

See Also

Share.getSector(), Share.getSubSector(), Share.getSuperSector(),
Share.getSectorIndex()

Share.getISIN() ShareScript v1.2

get the ISIN for an instrument

Synopsis
share.getISIN()

Returns

A string which gives the instrument’s ISIN.

See Also

Share.getEPIC(), Share.getName(), Share.getAlphaID(), Share.getSEDOL()

Share.getIBarArray() ShareScript v1.1

get intraday OHLCV bars for the instrument

Synopsis
share.getIBarArray()
share.getIBarArray(daysAgo, period)

Arguments

daysAgo The index back into the set of intraday days (0 is the most recent day, 1 is

previous, etc). Note that the previous day will be the previous day for which

intraday data is available, not the previous trading day (see Share.getIDate()).

period The bar length in seconds (must be at least 15). If not specified, 5 minute bars will

be created.

Returns

An array of PriceData objects, or undefined if no data is available.

Description

getIBarArray() is a Share object method that returns intraday OHLCV bars (by default, 5

minute bars for the most recent day).

The bars returned will correspond to intraday chart bars with the following settings: (i) start

with a full period, (ii) data derived from mid prices, (iii) normal market hours. Note that

intraday bars, where possible, use the first price within a bar as the open, rather than the last

price of the previous bar.

If you need bars calculated a different way, you can use the Share.getITradeArray() or

Share.getIBidOfferArray() methods to obtain the raw data, then process the data as required.

Global Functions and Objects Reference

ShareScript Language Reference 60

Example

The following example obtains 1 hours bars for a share, for the most recent day, then prints

the number of bars returned.

var share = getShare("LSE:TSCO");
var bars = share.getIBarArray(0, 60*60);
print (bars.length);

See Also

PriceData, Share.getIBarArrayOnDate(), Share.getITradeArray(),
Share.getIBidOfferArray()

Share.getIBarArrayOnDate() ShareScript v1.1

get intraday OHLCV bars for the instrument for a specific date

Synopsis
share.getIBarArrayOnDate(date, period)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date for

which to return the intraday price history.

period The bar length in seconds (must be at least 15). If not specified, 5 minute bars

will be created.

Returns

An array of PriceData objects, or undefined if no data is available.

Description

getIBarArrayOnDate() is a Share object method that returns intraday OHLCV bars for the

specified date. See the entry for Share.getIBarArray() for full details.

See Also

PriceData, Share.getIBarArray()

Share.getIBid() ShareScript v1.1

get the latest intraday bid price for the instrument

Synopsis
share.getIBid()

Returns

A number giving the latest intraday bid price for the instrument in the minor currency unit.

Undefined can be returned if a price is not available.

Description

This method is similar to Share.getIMid(). See the entry for that method for more details.

See Also

Share.getIMid(), Share.getIOffer(), Share.getCurrency()

Global Functions and Objects Reference

ShareScript Language Reference 61

Share.getIBidOfferArray() ShareScript v1.1

get the intraday price history for the instrument

Synopsis
share.getIBidOfferArray()
share.getIBidOfferArray(daysAgo)

Arguments

daysAgo The index back into the set of intraday days (0 is the most recent day, 1 is

previous, etc). Note that the previous day will be the previous day for which

intraday data is available, not the previous trading day (see Share.getIDate()).

Returns

An array of BidOfferData objects, or undefined if no data is available.

Description

getIBidOfferArray() is a Share object method that returns an intraday price history (by

default for the most recent day).

When a share is in intraday auction, Alpha stops updating the bid/offer values and only

updates the uncrossing price. In this case the history will contain some records with the

uncrossing price instead of the bid/offer. If you wish to exclude these records from the

history, you can inspect the isInAuction property of the BidOfferData records.

See Also

BidOfferData, Share.getIBidOfferArrayOnDate()

Share.getIBidOfferArrayOnDate() ShareScript v1.1

get the intraday price history for the instrument for a specific date

Synopsis
share.getIBidOfferArrayOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date for

which to return the intraday price history.

Returns

An array of BidOfferData objects, or undefined if no data is available.

Description

getIBidOfferArrayOnDate() is a Share object method that returns an intraday price history

for the selected date.

See Also

BidOfferData, Share.getIBidOfferArray()

Global Functions and Objects Reference

ShareScript Language Reference 62

Share.getIClose() ShareScript v1.1

get an intraday close price for the instrument

Synopsis
share.getIClose()
share.getIClose(daysAgo)

Arguments

daysAgo The index back into the set of intraday days (0 is the most recent day, 1 is

previous, etc). Note that the previous day will be the previous day for which

intraday data is available, not the previous trading day (see Share.getIDate()).

Returns

A number giving the intraday close price for the instrument in the minor currency unit.

Undefined can be returned if a price is not available (e.g. prior to the close).

Description

getIClose() is a Share object method that returns a closing price from the intraday data (by

default from the most recent day). For LSE shares, this method will return a value shortly

after the close at 4.30pm.

You can use the Share.getIDate() method to check the date of an intraday day. See the entry

for that method for more details about indexing into the set of intraday days.

If you require a full intraday price history, you can use one of the Share.getIBidOfferArray()

or Share.getIBarArray() methods.

See Also

Share.getIOpen(), Share.getIMid(), Share.getIBidOfferArray(), Share.getIBarArray(),

Share.getIDate(), Share.getCurrency()

Share.getIDate() ShareScript v1.1

get the date of an intraday day

Synopsis
share.getIDate()
share.getIDate(daysAgo)

Arguments

daysAgo The index back into the set of intraday days (0 is the most recent day, 1 is

previous, etc). Note that the previous day will be the previous day for which

intraday data is available, not the previous trading day.

Returns

A JavaScript date object, giving the date of an intraday day. Undefined will be returned if you

index beyond the start of the set of intraday data.

Description

getIDate() is a Share object method that returns the date of the most recent intraday day, or

the date of a previous day when the daysAgo parameter is used.

Global Functions and Objects Reference

ShareScript Language Reference 63

Alpha’s intraday data may have missing days (if Alpha is not connected to the intraday feed

every day). The daysAgo parameter used by this (and other intraday data methods) allows you

to index backwards into the intraday days present in Alpha’s intraday database without

knowing the dates for which data is available.

For example, if you connected to the intraday feed on Monday, but not Tuesday, then

connected again on Wednesday, a daysAgo value of “0” would return data for Wednesday, and

daysAgo value of “1” would return Monday’s data.

See Also

Share.getIDateNum(), Share.getIClose(), share.getIOpen(), share.getITradeArray(),

share.getIBidOfferArray(), share.getIBarArray()

Share.getIDateNum() ShareScript v1.1

get the dateNum of an intraday day

Synopsis
share.getIDateNum()
share.getIDateNum(daysAgo)

Arguments

daysAgo The index back into the set of intraday days (0 is the most recent day, 1 is

previous, etc). Note that the previous day will be the previous day for which

intraday data is available, not the previous trading day (see Share.getIDate()).

Returns

An integer dataNum value giving the date of an intraday day. Undefined will be returned if

you index beyond the start of the set of intraday days.

See Also

dateNum(), Share.getIDateNum()

Share.getIMid() ShareScript v1.1

get the latest intraday mid price for the instrument

Synopsis
share.getIMid()

Returns

A number giving the latest intraday mid price for the instrument in the minor currency unit.

Undefined can be returned if a price is not available.

Description

getIMid() is a Share object method that returns the latest intraday mid price available for the

instrument. You can use the Share.getIDate() or Share.getIDateNum() methods to check the

date of the latest intraday data.

If you require a full intraday price history, you can use one of the Share.getIBidOfferArray()

or Share.getIBarArray() methods.

Global Functions and Objects Reference

ShareScript Language Reference 64

See Also

Share.getIBid(), Share.getIOffer(), Share.getIBidOfferArray(), Share.getIDate(),
Share.getCurrency()

Share.getIMidHigh() ShareScript v1.3

get the intraday mid high price for the instrument

Synopsis
share.getIMidHigh()

Returns

A number giving the latest intraday mid high price for the instrument in the minor currency

unit. Undefined can be returned if a price is not available.

Description

getIMidHigh() is a Share object method that returns the latest intraday mid high price

available for the instrument. You can use the Share.getIDate() or Share.getIDateNum()

methods to check the date of the latest intraday data.

See Also

Share.getIMidLow(), Share.getITradeHigh(), Share.getITradeLow()

Share.getIMidLow() ShareScript v1.3

get the intraday mid low price for the instrument

Synopsis
share.getIMidLow()

Returns

A number giving the latest intraday mid low price for the instrument in the minor currency

unit. Undefined can be returned if a price is not available.

Description

getIMidLow() is a Share object method that returns the latest intraday mid low price available

for the instrument. You can use the Share.getIDate() or Share.getIDateNum() methods to

check the date of the latest intraday data.

See Also

Share.getIMidHigh(), Share.getITradeHigh(), Share.getITradeLow()

Share.getIOffer() ShareScript v1.1

get the latest intraday offer price for the instrument

Synopsis
share.getIOffer()

Global Functions and Objects Reference

ShareScript Language Reference 65

Returns

A number giving the latest intraday offer price for the instrument in the minor currency unit.

Undefined can be returned if a price is not available.

Description

This method is similar to Share.getIMid(). See the entry for that method for more details.

See Also

Share.getIBid(), Share.getIMid(), Share.getCurrency()

Share.getIOpen() ShareScript v1.1

get an intraday opening price for the instrument

Synopsis
share.getIOpen()
share.getIOpen(daysAgo)

Arguments

daysAgo The index back into the set of intraday days (0 is the most recent day, 1 is

previous, etc). Note that the previous day will be the previous day for which

intraday data is available, not the previous trading day (see Share.getIDate()).

Returns

A number giving the intraday open price for the instrument in the minor currency unit.

Undefined can be returned if a price is not available.

Description

getIOpen() is a Share object method that returns an opening price from the intraday data (by

default from the most recent day).

You can use the Share.getIDate() method to check the date of an intraday day. See the entry

for that method for more details about indexing into the set of intraday days.

See Also

Share.getIClose(), Share.getIBidOfferArray(), Share.getIDate(), Share.getCurrency()

Share.getITradeArray() ShareScript v1.1

get the intraday trade history for the instrument

Synopsis
share.getITradeArray()
share.getITradeArray(daysAgo)

Arguments

daysAgo The index back into the set of intraday days (0 is the most recent day, 1 is

previous, etc). Note that the previous day will be the previous day for which

intraday data is available, not the previous trading day (see Share.getIDate()).

Returns

An array of TradeData objects, or undefined if no data is available.

Global Functions and Objects Reference

ShareScript Language Reference 66

Description

getITradeArray() is a Share object method that returns a full intraday price history (by

default for the most recent day).

Example

The following example prints the size of any uncrossing trades (and the time they took place)

in the latest day’s intraday history for the Royal Bank of Scotland.

var rbs = getShare("LSE:RBS");
var trades = rbs.getITradeArray();
for (var i = 0; i < trades.length; i++)
{
 if (trades[i].type == TradeType.UT)
 print(trades[i].volume + " on " + trades[i].date);
}

See Also

TradeData, Share.getITradeArrayOnDate()

Share.getITradeArrayOnDate() ShareScript v1.1

get the intraday trade history for the instrument for a specific date

Synopsis
share.getITradeArrayOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date for

which to return the intraday trade history.

Returns

An array of TradeData objects, or undefined if no data is available.

Description

getITradeArray() is a Share object method that returns a full intraday trade history for the

selected date.

See Also

TradeData, Share.getITradeArray()

Share.getITradeHigh() ShareScript v1.3

get the intraday trade high price for the instrument

Synopsis
share.getITradeHigh()

Returns

A number giving the latest intraday trade high price for the instrument in the minor currency

unit. Undefined can be returned if a price is not available.

Global Functions and Objects Reference

ShareScript Language Reference 67

Description

getITradeHigh() is a Share object method that returns the latest intraday trade high price

available for the instrument (across all trade types). You can use the Share.getIDate() or

Share.getIDateNum() methods to check the date of the latest intraday data.

See Also

Share.getITradeLow(), Share.getITMidHigh(), Share.getIMidLow()

Share.getITradeLow() ShareScript v1.3

get the intraday trade low price for the instrument

Synopsis
share.getITradeLow()

Returns

A number giving the latest intraday trade low price for the instrument in the minor currency

unit. Undefined can be returned if a price is not available.

Description

getITradeLow() is a Share object method that returns the latest intraday trade low price

available for the instrument (across all trades types). You can use the Share.getIDate() or

Share.getIDateNum() methods to check the date of the latest intraday data.

See Also

Share.getITradeHigh(), Share.getIMidHigh(), Share.getIMidLow()

Share.getListing() ShareScript v1.3

get the instrument’s LSE listing (Full or AIM)

Synopsis
share.getListing()

Returns

A string which gives the listing for the instrument (e.g. “AIM” or “Full”). This method is only

useful for LSE-listed instruments. You can use the getMarket() method to return an

instrument’s exchange.

See Also
Share.getMarket()

Share.getLow()

get a single day’s low price for the instrument

Synopsis
share.getLow()
share.getLow(daysAgo)

Global Functions and Objects Reference

ShareScript Language Reference 68

Arguments

DaysAgo An optional integer specifying the number of trading days ago that you want

to get the day’s low price for (0 is the most recent low, 1 is yesterday, etc).

Returns

A number giving the low price of the instrument in the minor currency unit. Undefined can be

returned if a price is not available (e.g. the requested day lies before the start of the

instrument’s price history).

Description

getLow() is a Share object method that returns the requested day’s low price. If the daysAgo

parameter is not specified, getLow() returns the most recent day’s low. If you require a full

OHLCV record for an instrument, consider using Share.getPrice() instead.

See Also

Share.getLowOnDate(), Share.getClose(), Share.getOpen(), Share.getHigh(),

Share.getVolume(), Share.getPrice(), Share.getCurrency()

Share.getLowOnDate()

get a single day’s low price for the instrument on a specific date

Synopsis
share.getLowOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date on

which to return the day’s low price.

Returns

A number giving the low price of the instrument in the minor currency unit. Undefined can be

returned if the requested date lies outside of the instrument’s history.

Description

getLowOnDate() is a Share object method that returns the requested day’s low price for an

instrument. If date falls on a holiday or weekend, then the price on the preceding trading day

will be returned.

See Also

Share.getLow(), Share.getCloseOnDate(), Share.getOpenOnDate(), Share.getHighOnDate(),

Share.getVolumeOnDate(), Share.getPriceOnDate(), Share.getCurrency()

Share.getMarket()

get Alpha’s exchange (or market) code for the instrument

Synopsis
share.getMarket()

Returns

A string which gives the Exchange code of the instrument (e.g. “LSE”).

Global Functions and Objects Reference

ShareScript Language Reference 69

See Also

Share.getName(), Share.getEPIC()

Share.getMarketOpenTime() ShareScript v1.1

get the opening time for the instrument’s exchange

Synopsis
share.getMarketOpenTime()

Returns

The normal market (exchange) opening time as a timeNum.

See Also

timeNum, Share.getMarketCloseTime(), Share.getMarketOffsetGMT()

Share.getMarketCloseTime() ShareScript v1.1

get the closing time for the instrument’s exchange

Synopsis
share.getMarketCloseTime()

Returns

The normal market (exchange) closing time as a timeNum.

See Also

timeNum, Share.getMarketOpenTime(), Share.getMarketOffsetGMT()

Share.getMarketOffsetGMT() ShareScript v1.1

get the difference between an instrument’s time�zone and GMT

Synopsis
share.getMarketOffsetGMT()
share.getMarketOffsetGMT(date)

Arguments

date A JavaScript Date object specifying the date on which to return the offset. If

no date is specified, today is used.

Returns

The difference (in seconds) between the share objects’s time-zone and GMT.

Description

The value returned by this method is an number that can be added to the timeNum values

obtained from PriceData, TradeData or BidOfferData objects in order to convert them to

GMT.

e.g. during British Summer Time, this function will return –3600 for shares listed on the

London Stock Exchange.

Global Functions and Objects Reference

ShareScript Language Reference 70

See Also

timeNum, PriceData, BidOfferData, TradeData

Share.getMonthlyBarArray() ShareScript v1.2

get an array of monthly OHLCV price records for the instrument

Synopsis
share.getMonthlyBarArray()
share.getMonthlyBarArray(num)

Arguments

num An optional integer specifying the number of monthly bars required. e.g. 10

will return the most recent 10 monthly bars.

Returns

An array of PriceData objects. The oldest record is first (element 0). If more bars are

requested than available in the price history, the length of the array may be shorter than num.

Description

getMonthlyBarArray() is a Share object method that returns monthly bars (OHLCV records)

from the history. If the optional num parameter is not used, the entire price history is returned

as monthly bars. The oldest bar is at array[0]. The most recent bar is at array[array.length-1].

Monthly bars are based on calendar months. The most recent bar contains as many days as

have elapsed in the current calendar month.

If you require daily bars, use getPriceArray() instead. For weekly bars, use

getWeeklyBarArray(). For intraday bars (e.g. 5 minute bars), use getIBarArray().

See Also

PriceData, Share.getPriceArray(), Share.getWeeklyBarArray(), Share.getIBarArray(),
Share.getCurrency()

Share.getName()

get the full name of a company or instrument

Synopsis
share.getName()

Returns

A string which gives the name of the instrument, or the name of the company, that a share

object belongs to (e.g. “FTSE 100” or “Lloyds TSB Plc”).

See Also

Share.getShareName(), Share.getEPIC()

Global Functions and Objects Reference

ShareScript Language Reference 71

Share.getNotes() ShareScript v1.1

get the “notes column” values for the instrument

Synopsis
share.getNotes()

Returns

An array of strings containing the value of the notes columns 1-10. The first element of the

returned array corresponds to Note 1, the last element to Note 10. An element will be

undefined if the note has not been set.

Share.getNMS()

get the normal market size (NMS) for the instrument

Synopsis
share.getNMS()

Returns

A number giving the normal market size for the instrument (the unit is shares). This

information is only available for a company’s primary share. Note that this method now

returns the EMS, since NMS is so longer used – new code should use Share.getEMS() instead.

See Also

Share.getAssocShares(), Share.getEMS()

Share.getNumShares()

get the number of shares

Synopsis
share.getNumShares()

Returns

The number of shares issued (in Millions).

See Also
Share.getCap()

Share.getOpen()

get a single opening price for the instrument

Synopsis
share.getOpen()
share.getOpen(daysAgo)

Arguments

daysAgo An optional integer specifying the number of trading days ago that you want

to get an opening price for (0 is the most recent open, 1 is yesterday, etc).

Global Functions and Objects Reference

ShareScript Language Reference 72

Returns

A number giving the opening price of the instrument in the minor currency unit. Undefined

can be returned if a price is not available (e.g. the requested day lies before the start of the

instrument’s price history).

Description

getOpen() is a Share object method that returns the requested day’s opening price. If the

daysAgo parameter is not specified, getOpen() returns the most recent open. If you require a

full OHLCV record, consider using Share.getPrice() instead.

See Also

Share.getOpenOnDate(), Share.getClose(), Share.getHigh(), Share.getLow(),

Share.getVolume(), Share.getPrice(), Share.getCurrency()

Share.getOpenOnDate()

get a single opening price for the instrument on a specific date

Synopsis
share.getOpenOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date on

which to return the opening price.

Returns

A number giving the opening price of the instrument in the minor currency unit. Undefined

can be returned if the requested date lies outside of the instrument’s history.

Description

getOpenOnDate() is a Share object method that returns the requested day’s opening price. If

date falls on a holiday or weekend, then the price on the preceding trading day will be

returned.

See Also

Share.getOpen(), Share.getCloseOnDate(), Share.getHighOnDate(), Share.getLowOnDate(),

Share.getVolumeOnDate(), Share.getPriceOnDate(), Share.getCurrency()

Share.getPrice()

get a single OHLCV price record for the instrument

Synopsis
share.getPrice()
share.getPrice(daysAgo)

Arguments

daysAgo An optional integer specifying the number of trading days ago that you want

to get a price for (0 is the most recent price, 1 is yesterday, etc).

Global Functions and Objects Reference

ShareScript Language Reference 73

Returns

A PriceData object. The fields of this object can be undefined if a price record is requested

that lies before the start of the instrument’s history.

Description

getPrice() is a Share object method that returns a single OHCLV PriceData record. If the

daysAgo parameter is not specified, getPrice() returns the most recent price record.

If you require OHLCV data across many days, consider using Share.getPriceArray()

instead.

Example

The following example gets the last price date (as a JavaScript Date object) for a share:

var lastdate = my_share.getPrice().date

See Also

PriceData, Share.getPriceOnDate(), Share.getPriceArray(), Share.getPriceArrayDates(),

Share.getOpen(), Share.getHigh(), Share.getLow(), Share.getClose(), Share.getVolume()

Share.getPriceArray()

get an array of OHLCV price records for the instrument

Synopsis
share.getPriceArray()
share.getPriceArray(num)

Arguments

num An optional integer specifying the number of prices required. e.g. 10 will

return the most recent 10 prices.

Returns

An array of PriceData objects. The oldest record is first (element 0). If more days are

requested than available in the price history, the length of the array may be shorter than num.

Description

getPriceArray() is a Share object method that returns multiple OHLCV records from the

history. If the optional num parameter is not used, the entire price history is returned. The

oldest price is at array[0]. The most recent price will be at array[array.length-1].

See Also

PriceData, Share.getCloseArray(), Share.getPriceArrayDates(), Share.getPrice(),

Share.getPriceOnDate(), Share.getCurrency()

Share.getPriceArrayDates()

get an array of OHLCV price records for the instrument between two dates

Synopsis
getPriceArrayDates()
getPriceArrayDates(start)
getPriceArrayDates(start, end)

Global Functions and Objects Reference

ShareScript Language Reference 74

Arguments

start An optional JavaScript Date object specifying the date on which to start

returning prices. If not specified, the start of the history is used.

end An optional JavaScript Date object specifying the date on which to stop

returning prices. If not specified, the end of the history is used.

Returns

An array of PriceData objects for each of the days between the start and end dates

(inclusive). The oldest record is first (array element 0). Records will not be returned for dates

on which trading did not take place (e.g. weekends and holidays). The length of the array may

be zero if no records match the criteria.

Description

getPriceArrayDates() is a Share object method that returns multiple OHLCV records from

the history. If the end date is not specifed, the end of the history is assumed. If the start date

is not specified, the start of the history is assumed. The oldest price is at array[0]. The most

recent price will be at array[array.length-1].

See Also

PriceData, Share.getCloseArrayDates(), Share.getPriceArray(), Share.getPrice(),
Share.getPriceOnDate(), Share.getCurrency()

Share.getPriceOnDate()

get a single OHLCV price record for the instrument on a specific date

Synopsis
share.getPriceOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date to

return the price for.

Returns

A PriceData object. The fields of this object can be undefined if the requested date lies

outside of the instrument’s history.

Description

getPriceOnDate() is a Share object method that returns a single OHCLV PriceData record

from an instrument’s price history. If date falls on a holiday or weekend, then the price on the

preceding trading day will be returned.

If you require OHLCV data across many days, consider using Share.getPriceArray()

instead.

See Also

PriceData, Share.getPrice(), Share.getPriceArray(), Share.getPriceArrayDates(),
Share.getCloseOnDate()

Global Functions and Objects Reference

ShareScript Language Reference 75

Share.getResult()

provides basic access to the company’s historical and forecast results

Synopsis
share.getResult(year, result)

Arguments

year A number giving the year for which results are desired. A value <0 will access

historic results, 0 the current year, >0 for forecasts.

result A value specifying the result required (e.g. profit). Possible values are defined

as static constants by the Result object.

Returns

The requested result, or undefined if that kind of result was not available for the requested

year. The return type may be either a number, a date or a string, depending on the kind of

result requested. See Result for details.

Description

getResult is a Share object method that gets a specific result (e.g. profit) for a given year.

This may be a historical result, an announced result, or a forecast. getResult() always returns

year-end figures. If you require quarterly or interim results (or special dividends), use the

Share.getResultArray() function instead.

A negative value for year will access historical results (e.g. –1 is one year ago). Positive

values access forecasts. Year 0 is the most recent year for which the year end results are

available (whether or not they have been analysed and normalised).

The type of the most recent results will change from “Announced” to “Final” after they have

been normalised. You can access this result type using getResult(…, Result.Type).

The possible kinds of results that can be requested are defined as static constants by the

Result object.

Example
var profit = my_share.getResult(0, Result.Profit);

See Also

Result, Share.getResultArray(), Share.getCurrencyR()

Share.getResultArray()

provides advanced access to the company’s historical and forecast results

Synopsis
share.getResultArray(year, result)

Arguments

year A number giving the year for which results are desired. A value <0 will access

historic results, 0 the current year, >0 for forecasts.

result A value specifying the result required (e.g. profit). Possible values are defined

as static constants by the Result object. Note that only a sub-set of these

constants are valid for getResultArray().

Global Functions and Objects Reference

ShareScript Language Reference 76

Returns

An array providing all values of a given result for the specified year. The array can be empty

if no results are available for the requested year. The values in the array are cumulative (but

see below), and the earliest result will be the first element of the array. An element of the

array may be undefined to indicate that a value is not relevant or unavailable.

Description

getResultArray() is a Share object method that can be used to access quarterly, interim and

final/forecast results (and any special dividend payments) for a year. The number of elements

in the returned array is variable, depending on whether the company reports bi-annually or

quarterly (and if any special dividend payments have been made).

For information about the year parameter, see getResult().

The possible kinds of results that can be requested are defined as static constants by the

Result object. Note that only a sub-set of these constants are valid for getResultArray().

Note that the array will always be the same length for a given year, no matter what kind of

result is requested. This allows you to call this function multiple times, first to identify the

type of result, and subsequently to retrieve the value of specific items. It is probably easiest to

think of each call to getResultArray() as returning a single row of a table, where the columns

represent each reported result across a year –

Result Type Interim Special Final

Profit (£m) 19.54 43.56

EPS (p) 15.60 34.81

Dividend (p) 4.85 1.00 20.15

Ex-div date 29/11/06 15/3/06 6/6/07

Where a numerical result is requested (such as profit or dividend), the values in the array will

be cumulative, with the final value corresponding to the total for the year (as returned by the

getResult() function). An exception to this is the “Special” result type, which is a self-

contained record of a special dividend, and is not included in the cumulative total.

Example
my_share.getResultArray(0, Result.Type) � [“Interim”, “Special”, “Final”]

See Also

Result, Share.getResult(), Share.getCurrencyR()

Share.getRiskAnalysis() ShareScript v1.31

get risk analysis metrics for the instrument

Synopsis
share.getRiskAnalysis(type, config)

Arguments

type A value specifying the risk analysis required (e.g. alpha). Possible values are

defined as static constants on the RA object.

config A config object specifying values to configure the risk analysis, or an empty

object {} to accept the defaults. Available properties are:

Global Functions and Objects Reference

ShareScript Language Reference 77

periodperiodperiodperiod Integer. The number of return periods (the default is 12).

0 means all data.

periodTypeperiodTypeperiodTypeperiodType Constant. The period type. Possible values are defined

by the RA object (the default is RA.Quarterly).

periodPriceperiodPriceperiodPriceperiodPrice Constant. The price to use from the period. Possible

values are defined by the RA object (the default is

RA.LastPrice).

annualiseannualiseannualiseannualise Boolean. Whether to annualise the result (the default is

false).

riskFreeRateriskFreeRateriskFreeRateriskFreeRate Number. The risk free rate % (the default is 0.5).

benchmarkbenchmarkbenchmarkbenchmark Share object. The benchmark (the default is the

FTSE100 index).

slidingslidingslidingsliding Boolean (the default is true).

minPeriodminPeriodminPeriodminPeriod Number. Minimum periods. Default is 0 (disabled).

Returns

A number giving the value of the metric requested, or undefined if the analysis cannot be

performed because of insufficient data.

Throws

RangeError If any of the arguments are out of range, or config options are incorrect for the

selected analysis type.

Description

getRiskAnalysis() is a Share object method that provides access to Alpha’s risk analysis

metrics (available from the Add Risk Analysis Column… dialog). Because the set of available

parameters varies across the analysis types, this method takes a “config” object rather than the

more usual approach of multiple parameters separated by commas.

This config object is just a plain JavaScript object to which you add property names and

values if you want to specify a non-default setting. See the example below for an illustration.

This leads to more readable scripts, and makes it easy to leave something set to its default

value.

Note that passing undefined as a benchmark to an analysis type requiring a benchmark will

not cause the script to fail but simply causes the risk analysis to return undefined. This allows

you to use {benchmark: share.getSectorIndex()} safely without needing to catch

exceptions.

Example
var alpha = share.getRiskAnalysis(RA.Alpha, {

period: 20,
periodType: RA.Monthly,
benchmark: share.getSectorIndex()

});

See Also
Share.getResult()

Global Functions and Objects Reference

ShareScript Language Reference 78

Share.getSector()

get the sector of the company

Synopsis
share.getSector()

Returns

A string which gives the sector that a company is engaged in (e.g. “Real Estate”).

See Also

Share.getIndustry(), Share.getSubSector(), Share.getSuperSector(),
Share.getSectorIndex()

Share.getSectorIndex()

get a Share object corresponding to the sector index for the company

Synopsis
share.getSectorIndex()

Returns

A Share object corresponding to the company’s sector index, or undefined if there is no sector

index available.

Description

getSectorIndex() is a Share object method that returns (if available) a Share object

corresponding to the sector index for the instrument. For UK Equities, this will normally be

either as FTSE 350 sector index or All-share sector index. For Unit Trusts, this will be the

IMA sector index (this was added in ShareScript v1.31).

See Also

getShare(), Share.getAssocShares(), getList(), getPortfolio()

Share.getSEDOL() ShareScript v1.3

get the SEDOL for an instrument

Synopsis
share.getSEDOL()

Returns

A string which gives the instrument’s SEDOL.

See Also

Share.getEPIC(), Share.getName(), Share.getAlphaID(), Share.getISIN()

Global Functions and Objects Reference

ShareScript Language Reference 79

Share.getShareName()

get the name of the instrument

Synopsis
share.getShareName()

Returns

A string which gives the name of this particular instrument belonging to a company (e.g. “25p

ords”), or undefined if this is not available.

See Also
Share.getName()

Share.getShareNum() ShareScript v1.1

get the share number for the instrument

Synopsis
share.getShareNum()

Returns

The share number.

Description

A company may have one or more different shares. This function returns a number that

uniquely identifies a particular share for a given company. If the Share object belongs to a

company with only one share (or if the Share object represents e.g. an index) then this number

will be 0.

Note that the value returned by this method corresponds to an index into the array returned by

Share.getAssocShares().

For more information, see the description of the Share.getAlphaID() function below.

See Also
Share.getAlphaID(), getShare(), Share.getAssocShares()

Share.getAlphaID() ShareScript v1.1

get the Alpha ID for the instrument

Synopsis
share.getAlphaID()

Returns

A number giving the Alpha ID of the instrument.

Description

The Alpha ID identifies an instrument or the company to which an instrument belongs.

Note that the Alpha ID may not by itself uniquely identify an instrument, since a company

may have more than one type of share (see the getAssocShares() function).

Global Functions and Objects Reference

ShareScript Language Reference 80

To uniquely identify an instrument, you must also obtain the share number for the instrument

using Share.getShareNum(). Together, the AlphaID and the ShareNum uniquely identify an

instrument.

See Also
Share.getShareNum(), getShare(), Share.getAssocShares()

Share.getSubSector()

get the sub�sector of the company

Synopsis
share.getSubSector()

Returns

A string which gives the sub-sector that the company is engaged in (e.g. “Real Estate Holding

& Development”).

See Also

Share.getIndustry(), Share.getSector(), Share.getSuperSector(),
Share.getSectorIndex()

Share.getSuperSector() ShareScript v1.3

get the super�sector of the company

Synopsis
share.getSuperSector()

Returns

A string which gives the super-sector that the company is engaged in.

See Also

Share.getIndustry(), Share.getSector(), Share.getSubSector(), Share.getSectorIndex()

Share.getTradingSystem() ShareScript v1.3

get the LSE’s trading system for the instrument

Synopsis
share.getTradingSystem()

Returns

A string which gives the LSE’s trading system for the instrument (e.g. “SETSqx”). This

method is only useful for LSE-listed instruments. You can use the getMarket() method to

return an instrument’s exchange.

See Also
Share.getMarket()

Global Functions and Objects Reference

ShareScript Language Reference 81

Share.getType()

get the type of the instrument

Synopsis
share.getType()

Returns

A string which gives the type of the instrument (e.g. “Ord”, “Index”).

See Also
Share.getShareName()

Share.getUncrossingPrice() ShareScript v1.34

get the latest indicative uncrossing price for the instrument

Synopsis
share.getUncrossingPrice()

Returns

If the instrument is in intraday auction, this method returns a number giving the latest intraday

auction indicative uncrossing price. The value is in the minor currency unit.

Undefined will be returned if there is no uncrossing price or the share is not currently in

intraday auction.

When a share is in auction, Alpha stops updating the bid/offer values and will only update the

uncrossing price. The bid/offer and mid values returned (e.g. by the Share.getIMid() method)

will be the values immediately prior to the start of the auction.

See Also

Share.isInAuction(), Share.getIMid(), Share.getIBidOfferArray()

Share.getVolume()

get a single day’s volume for the instrument

Synopsis
share.getVolume()
share.getVolume(daysAgo)

Arguments

daysAgo An optional integer specifying the number of trading days ago that you want

to get the volume figure for (0 is the most recent volume, 1 is yesterday, etc).

Returns

A number giving the day’s volume for the instrument on the requested day. Undefined can be

returned if no volume is available (e.g. the requested day lies before the start of the

instrument’s price history).

Global Functions and Objects Reference

ShareScript Language Reference 82

Description

getVolume() is a Share object method that returns the requested day’s volume. If the daysAgo

parameter is not specified, getVolume() returns the most recent day’s volume. If you require a

full OHLCV record for an instrument, consider using Share.getPrice() instead.

See Also

Share.getVolumeOnDate(), Share.getClose(), Share.getOpen(), Share.getHigh(),

Share.getLow(), Share.getPrice()

Share.getVolumeOnDate()

get a single day’s volume for the instrument on a specific date

Synopsis
share.getVolumeOnDate(date)

Arguments

date A JavaScript Date object (or alternatively a dateNum) specifying the date on

which to return the day’s volume figure.

Returns

A number giving the day’s volume for the instrument. Undefined can be returned if the

requested date lies outside of the instrument’s history.

Description

getVolumeOnDate() is a Share object method that returns the requested day’s volume for an

instrument. If date falls on a holiday or weekend, then the volume for the preceding trading

day will be returned.

See Also

Share.getHigh(), Share.getCloseOnDate(), Share.getOpenOnDate(),

Share.getHighOnDate(), Share.getLowOnDate(), Share.getPriceOnDate()

Share.getWeeklyBarArray() ShareScript v1.2

get an array of weekly OHLCV price records for the instrument

Synopsis
share.getWeeklyBarArray()
share.getWeeklyBarArray(num)

Arguments

num An optional integer specifying the number of weekly bars required. e.g. 10

will return the most recent 10 weekly bars.

Returns

An array of PriceData objects. The oldest record is first (element 0). If more bars are

requested than available in the price history, the length of the array may be shorter than num.

Global Functions and Objects Reference

ShareScript Language Reference 83

Description

getWeeklyBarArray() is a Share object method that returns weekly bars (OHLCV records)

from the history. If the optional num parameter is not used, the entire price history is returned

as weekly bars. The oldest bar is at array[0]. The most recent bar is at array[array.length-1].

Weekly bars run from Monday to Friday, with the most recent bar containing as many days as

have elapsed in the current week.

If you require daily bars, use getPriceArray() instead. For monthly bars, use

getMonthlyBarArray(). For intraday bars (e.g. 5 minute bars), use getIBarArray().

See Also

PriceData, Share.getPriceArray(), Share.getMonthlyBarArray(), Share.getIBarArray(),
Share.getCurrency()

Share.isInAuction() ShareScript v1.34

returns whether the share is in an intraday auction.

Synopsis
share.isInAuction()

Returns

A boolean value (true or false) that indicates whether the share is in an intraday auction.

When a share is in auction, Alpha stops updating the bid/offer values and will only update the

uncrossing price. The bid/offer and mid values returned (e.g. by the Share.getIMid() method)

will be the values immediately prior to the start of the auction.

Note that SETSqx instruments will always return false when this method is called, since

instruments on this platform are in permanent auction.

See Also
Share.getUncrossingPrice()

Share.isSuspended()

returns whether the company’s shares are suspended from trading

Synopsis
share.isSuspended()

Returns

A boolean value (true or false) that indicates whether the company has its shares suspended

from trading.

timeNum() ShareScript v1.1

create a Alpha timeNum

Synopsis
timeNum(dateObj)
timeNum(hour, min, sec)

Global Functions and Objects Reference

ShareScript Language Reference 84

Arguments

dateObj A JavaScript Date object to be used to create the timeNum.

hour The hour as an integer from 0 to 23.

min The minute as an integer from 0 to 59.

sec The second as an integer from 0 to 59.

Returns

An integer timeNum representing the time.

Throws

RangeError If any of the arguments are out of range.

Description

timeNum() is a global function that you can use to create a timeNum value (which is just an

integer that compactly represents a time, in seconds since midnight). Scripts using timeNums

will be faster than those using JavaScript Date objects.

Normally, you will not need to create timeNums yourself, but will obtain them from a

PriceData , BidOfferData and TradeData records. You can then use one of the other timeNum

functions below to inspect the time.

There is also a set of dateNum() functions that can be used to compactly represent the date

part of a JavaScript Date object.

See Also

PriceData, TradeData, BidOfferData, dateNum, timeNumGetHour(), timeNumGetMin(),

timeNumGetSec(), Share.getMarketOpenTime(), Share.getMarketCloseTime()

timeNumGetHour() ShareScript v1.1

return the hour part of a Alpha timeNum

Synopsis
timeNumGetHour(n)

Arguments

n An integer timeNum obtained e.g. from a PriceData record or timeNum().

Returns

An integer providing the hour (0-23).

Description

timeNumGetHour() is a global function that returns the hour part of a timeNum value. See

timeNum() for more information about timeNums.

See Also

timeNum(), timeNumGetMin(), timeNumGetSec()

Global Functions and Objects Reference

ShareScript Language Reference 85

timeNumGetMin() ShareScript v1.1

return the minute part of a Alpha timeNum

Synopsis
timeNumGetMin(n)

Arguments

n An integer timeNum obtained e.g. from a PriceData record or timeNum().

Returns

An integer providing the minutes (0-59).

Description

timeNumGetMin() is a global function that returns the minute part of a timeNum value. See

timeNum() for more information about timeNums.

See Also

timeNum(), timeNumGetHour(), timeNumGetSec()

timeNumGetSec() ShareScript v1.1

return the seconds part of a Alpha timeNum

Synopsis
timeNumGetSec(n)

Arguments

n An integer timeNum obtained e.g. from a PriceData record or timeNum().

Returns

An integer providing the seconds (0-59).

Description

timeNumGetSec() is a global function that returns the seconds part of a timeNum value. See

timeNum() for more information about timeNums.

See Also

timeNum(), timeNumGetHour(), timeNumGetMin()

TradeData ShareScript v1.1

details an intraday trade Object�TradeData

Synopsis
TradeData.property

Construction

TradeData objects are returned in an array by the getITradeArray() series of Share object

methods. They cannot be created using the normal JavaScript new() operator.

Global Functions and Objects Reference

ShareScript Language Reference 86

Properties
price The price at which the trade took place in the minor currency unit (e.g.

Pence)

volume The size of the trade (number of shares).

type The type of trade. Possible values are defined as static constants by

TradeType (see next entry).

date The date/time (a JavaScript Date object), or undefined if no value is

available.

dateNum An integer representation of the date (see below for details).

timeNum An integer representation of the time (seconds since midnight).

isPlusMarkets A boolean value. ShareScript v1.3

Indicates whether the trade took place on Plus Markets. This field is only

used for instruments where the exchange is LSE.

index An integer giving the index of this event within the second (see below for

more information). ShareScript v1.33

Description

TradeData objects represent an intraday trade.

The dateNum & timeNum fields provides an integer representation of the date and time. This is

made available since JavaScript Date objects are relatively costly (in terms of execution

speed) to use and compare.

Even though the time resolution provided by the date and timeNum fields is limited to a

second, the records are always returned in the correct sequence by getITradeArray().

However, if you need to determine to ordering of trades with respect to bid/offers (which are

returned separated by the getIBidOfferArray() method), then you must use the index fields

present in both arrays to determine the proper ordering of trades and prices that occur in the

same second. This field starts at zero each second and increments with each trade or bid/offer

occurring within that second.

See Also

dateNum(), timeNum(), Share.getITradeArray(), Share.getITradeArrayOnDate(), PriceData,
BidOfferData

TradeType ShareScript v1.1

constants to identify the different types of trades

Synopsis
TradeType.constant

Constants
Unknown An unknown trade type

Cum Cumulative trade e.g. for index volume, or snapshot data. ShareScript v1.3

O Ordinary trade immediate publication

AT Automatic trade

UT Uncrossing trade (total volume SETS auction)

Global Functions and Objects Reference

ShareScript Language Reference 87

CT Contra Trade

OK Ordinary trade delayed publication

NT Negotiated trade immediate publication

NK Negotiated trade delayed publication

PC Previous day contra trade

LC Late correction

NM Not to mark

OT OTC trade immediate publication

TK OTC trade delayed publication

IF Inter fund cross delayed publication

OC OTC trade late correction

SI SI trade immediate publication

SK SI trade delayed publication

SC SI trade late correction

OM Market maker to market maker (Plus markets only) ShareScript v1.3

OX Crossed (Plus markets only) ShareScript v1.3

OR Riskless principal (Plus markets only) ShareScript v1.3

OP Portfolio (Plus markets only) ShareScript v1.3

NX Negiotiated crossed (Plus markets only) ShareScript v1.3

NB Negiotiated broker to broker (Plus markets only) ShareScript v1.3

NR Negiotiated riskless principal (Plus markets only) ShareScript v1.3

NP Negiotiated portfolio (Plus markets only) ShareScript v1.3

L Large in scale (Plus markets only) ShareScript v1.3

I Protected trade (Plus markets only) ShareScript v1.3

T Protected trade confirmation (Plus markets only) ShareScript v1.3

Z Off market (Plus markets only) ShareScript v1.3

Description

TradeType is a global object that defines constants that refer to the various types of trades.

They can be used to identify the type of trade in a TradeData object.

The majority of these codes apply to LSE/Plus Markets data only.

US market trades are always listed as Ordinary trades (TradeType.O), or Cumulative trades

(TradeType.Cum) if, for example, a 15 second snapshot feed is used.

See Also

TradeData, Share.getITradeArray(), Share.getITradeArrayOnDate()

Column Objects Reference

ShareScript Language Reference 88

Column Objects Reference

Column

Alpha column interface Object�Column

Construction

ShareScript Column objects are created when the user adds a ShareScript column to a list

screen, or creates a ShareScript alarm. They are not created using the normal JavaScript new()

operator.

Methods

A Column object has a few methods you can call (e.g. the setTitle() method) and two

methods you can supply to create a new ShareScript column (the init() and getVal()

methods).

The load() method allows you to make library functions available within the Column object,

rather than defining them in the global object. This will prevent namespace collisions when

your column uses functions defined externally.

init() Optional. Alpha will call a Column object’s init() method once,

before any call to getVal().

getVal() Alpha calls a Column object’s getVal() method when it needs to get

the value of the column for an instrument. The value returned by

this method becomes the value of the column.

load() Load and execute a ShareScript file in this column object. See the

global load() method for full details.

setTitle() Set the column heading. ShareScript v1.1

setValueForShare() Store a value keyed on the share. ShareScript v1.3

getValueForShare() Retrieve a value keyed on the share. ShareScript v1.3

Constants

These constants are defined on the column object, and can be used for comparison with the

status parameter passed to the init() function (see the init() method description for details):

Loading Alpha has started up, and is loading the column from the user

configuration files.

Adding The user has added a new column.

Editing The user has indicated they wish to edit the column.

Properties
storage The column’s Storage object, which provides a permanent storage

mechanism for data.

See section 5 of this reference for details. ShareScript v1.1

isAlarmContext Indicates whether the column is being used as an alarm (true) or a

normal column (false). ShareScript v1.3

Column Objects Reference

ShareScript Language Reference 89

Description

When you create a script for a ShareScript column, you need to specify a getVal() function,

and (optionally) an init() function. These, and any other functions or variables you define in

the file will become properties of a Column object.

The value returned by getVal() becomes the value of the column for an instrument. See the

reference entry for Column.getVal() for more details.

Note that the Column object is at the start of the scope chain when executing the code in your

column script. Thus a call to e.g. the load() method will call the current Column object’s

load() method, rather than the load() method in the global object.

Any functions you call that are not defined by your Column object will be resolved in the next

object in the scope chain (i.e. the global object).

Column scripts should be placed in your ShareScript/Columns/ directory.

Directives

Column directives allow you to tell Alpha how to treat the column created by your script.

They are detailed here for completeness, although they are not technically part of the

ShareScript language (directives are placed inside comments, and are used by Alpha itself,

rather than the ShareScript interpreter). Directives take the form:

@Field:Value

The available fields and the values they can take are detailed below. Note that field names and

values are not case sensitive. Normally, you should place any directives you wish to use in a

comment, near the top of your ShareScript file.

FieldFieldFieldField Valid values/description

@Name Any text.

Alpha will use this value as the name of the column. This will

appear at the top of your column, and in the Add ShareScript

Column dialog. If not specified, Alpha will use the filename of your

column script.

e.g. //@Name:My Column

@Description Any text.

A description of what your Script does, which is displayed in the

Add ShareScript Column dialog.

e.g. //@Description:The total return over 3 years.

@Returns Valid values are Text or Number.

Tells Alpha what kind of values your Script will generate. This will

change how the values are sorted, and what options are presented to

the user. The default is Number. Note that only columns returning a

number can be used as Data Mining criteria.

e.g. //@Returns:Text

@Width A number.

Tells Alpha how wide the column should be (in pixels).

e.g. //@Width:50

Column Objects Reference

ShareScript Language Reference 90

FieldFieldFieldField Valid values/description

@Update Valid values are Normal, Intraday or Periodic. ShareScript v1.1

Normal updating mean the column values will only be re-evaluated

when the historical price/fundamentals database is updated.

Intraday updating will cause a column value to be re-evaluated

whenever new intraday data arrives for the share.

Periodic updating will cause the values to be updated every minute

(by default) when you are connected to the intraday feed. You can

also specify a different update period in seconds (with a minimum

of 15). e.g. @Update:Periodic,30

@Env Valid values are Development or Production ShareScript v1.1

This directive modifies the environment Alpha provides to the user

to interact with the column. The default is Development.

When Production is selected –

(i) The “Refresh Script” command is removed from the menu

(ii) “Edit column…” will not allow the user to select a different

script. It will instead call the Column’s init() function with

Editing status.

@Editable Valid values are Yes or No. ShareScript v1.1

Applicable only with Production environment. This directive tells

Alpha whether to display the “Edit column…” option. The default is

Yes.

@DefaultRangeMax A number. ShareScript v1.3

When a numeric column is used as an alarm, this value is used to

specify the default alarm trigger upper threshold.

@DefaultRangeMin A number. ShareScript v1.3

When a numeric column is used as an alarm, this value is used to

specify the default alarm trigger lower threshold.

@StandardAlarmOutput Valid values are Yes or No. ShareScript v1.3

When a numeric column is used as an alarm, Yes tells Alpha not to

prompt the user for thresholds since the column will output 0 (or

undefined) to indicate the alarm has not triggered, and any non-zero

value to indicate a trigger condition. The default is No.

Column.init()

method invoked when a column is created

Synopsis
function init(status)

Arguments

status A parameter passed (by Alpha) telling you why Alpha is initialising the

column. This should be compared to the constants defined on the Column

object (e.g. Adding).

Column Objects Reference

ShareScript Language Reference 91

Returns

You should return a value of false if you don’t want the column to be added (or replaced).

See below for details.

Description

Alpha invokes a column’s init() method when a Column object is created by Alpha. It is

guaranteed to be called before any call to getVal(). You do not need to supply an init()

method if you do not need one.

The init() method (and its return value) is handled by Alpha as follows:

When the user adds a column for the first time – Alpha creates a new Column object, then

calls init() with the status set to Adding. If init() returns false, the column is not added,

and the Column object is discarded.

When the user edits a column – Alpha will create a new Column object, and copy any data in

the original column’s storage area to the new object. It then calls the init() function of the

new Column object with the status set to Editing. If the init() function returns false, the new

column is discarded, and the user’s list table or Data Mining filter is left unchanged.

When Alpha starts up, it will create a Column object for any ShareScript columns in the

user’s list tables (or DM filters). It will then call the init() function with a status of Loading.

If the init() function returns false, the column will be disabled (but will still be visible to

the user).

Finally, note that the “Refresh script” command (available on a column’s context menu)

creates a new column object and calls init() with a status of Adding. If init() returns false,

the column is disabled.

Example

This simple (but complete) example shows you how to structure your init() function when

you allow a user to specify a parameter for the column. The user is prompted for a number of

days ago, and the column will then display the close price for that date:

//@Name:Example

var daysAgo = 5;

function init(status)
{
 if (status == Loading || status == Editing)
 daysAgo = storage.getAt(0);

 if (status == Adding || status == Editing)
 {
 var dlg = new Dialog("Example Column", 200, 45);
 dlg.addOkButton();
 dlg.addCancelButton();
 dlg.addIntEdit("days", -1,-1,-1,-1, "", "trading days", daysAgo, 0, 250);
 if (dlg.show()==Dialog.Cancel)
 return false;
 daysAgo = dlg.getValue("days");
 storage.setAt(0, daysAgo);
 }
 setTitle("Close " + daysAgo + " days ago");
}

function getVal(share)
{
 return share.getClose(daysAgo);
}

Column Objects Reference

ShareScript Language Reference 92

Column.getVal()

method invoked when Alpha needs the column value for an instrument

Synopsis
function getVal(shareObj)

Arguments

shareObj The Share object that Alpha needs a column value for.

Description

Alpha invokes a Column’s getVal() method when it needs a value for the column for an

instrument.

The return value of the function will become the value of the column for that instrument.

Alpha will convert the returned value to a number (the default), or a string using the standard

JavaScript type conversions. Use a @Returns directive in your script to specify which

conversion should be used.

In some cases you may not want to return a value (if a value cannot be computed for a

particular instrument). In this case, Alpha will treat the value as being not available, and will

display and sort it accordingly. You can also return the undefined JavaScript value for this

purpose.

When a column returns a string and is used as an alarm, Alpha checks the first character of

the returned string to see if it is “>” or “<”. If so, this character is not displayed to the user

and is instead used to set the alert colour. The character “>” is used to choose the “Price Up”

alert colour, and “<” is used to choose the “Price Down” alert colour.

Example

This simple example returns an instrument’s name as the value of the column. Note the

@Returns directive which tells Alpha to treat the return value as a string, not to convert it to a

number.

//@Returns:Text
function getVal(instr)
{
 return instr.getName();
}

Column.setTitle() ShareScript v1.1

sets the column heading

Synopsis
setTitle(s)

Arguments

s A string providing a heading for the column

Description

The setTitle() function allows you to set the column’s heading. You should normally call

this method from the init() function.

Column Objects Reference

ShareScript Language Reference 93

Column.getValueForShare() ShareScript v1.3

gets a user�defined value for an instrument

Synopsis
getValueForShare(shareObj)

Arguments

shareObj A share object

Returns

The value that was set for the instrument, or undefined if no value has been set.

Description

The getValueForShare() method returns the value for a given instrument. For more

information, see the description for the corresponding setValueForShare() method below.

See Also
Column.setValueForShare()

Column.setValueForShare() ShareScript v1.3

sets a user�defined value for an instrument

Synopsis
setValueForShare(shareObj, value)

Arguments

shareObj A share object

value Any javascript type

Description

Column objects provide a mechanism to set and subsequently retrieve arbitrary user-defined

values on a per-instrument basis, using the getValueForShare() and setValueForShare()

column object methods.

Any JavaScript data type can be stored against an instrument, from simple boolean values to

objects and arrays.

This mechanism can be useful when you want to store the results of calculations on a per-

share basis, especially for columns that are updated frequently. There is an example of this

technique in the Alarms tutorial of the ShareScript Guide.

Unlike a column’s storage area, any values stored by setValueForShare() are temporary,

and will be lost when the column object is destroyed (e.g. when you quit Alpha, or edit a

column).

These methods are provided mainly for convenience, since internally setValueForShare() is

simply implemented by adding properties to a plain JavaScript object, where the name of each

property is string uniquely identifying the instrument.

Example
setValueForShare(shareObj, "hello");
getValueForShare(shareObj); // returns “hello”

Column Objects Reference

ShareScript Language Reference 94

See Also
Column.getValueForShare()

Indicator Objects Reference

ShareScript Language Reference 95

Indicator Objects Reference

Indicator

Alpha indicator interface Object�Indicator

Construction

Because Indicator objects represent ShareScript indicators added to graphs by the user, they

are not created using the normal JavaScript new() operator.

Methods

An Indicator object has several methods you can call and two methods you can supply to

create a new ShareScript indicator (the init() and getGraph() methods).

The load() method allows you to make library functions available within the Indicator

object, rather than defining them in the global object. This will prevent namespace collisions

when your indicator uses functions defined externally.

init() Optional. Alpha will call an Indicator object’s init() method

once, before any call to getGraph().

getGraph() Alpha calls an Indicator object’s getGraph() method when it

needs to get the indicator data an instrument. The array(s) of

values returned by this method is plotted as one or more indicator

data series.

load() Load and execute a ShareScript file in this indicator object. See

the global load() method for full details.

clearHorizontalLines() Remove all added horizontal lines from the indicator.

getBackColour() Get the background colour of the indicator window.

getBarLength() Returns the current bar length. ShareScript v1.35ShareScript v1.35ShareScript v1.35ShareScript v1.35

setHorizontalLine() Draw a horizontal line at a given y-axis level.

setLayer() Determines whether a main graph indicator is drawn above or

below the main chart. ShareScript v1.31

setRange() Set the y-axis range of the indicator window.

setSeriesChartType() Set the chart type for a data series.

setSeriesColour() Set the colour for plotting a data series.

setSeriesColourMode() Set the colour mode for a data series.

setSeriesLineStyle() Set the line style for a data series.

setTitle() Set the indicator title.

Constants

These constants are defined on the indicator object, and can be used for comparison with the

status parameter passed to the init() function (see the init() method description for details):

Loading Alpha has started up, and is loading the indicator from the user

configuration files.

Adding The user has added a new indicator.

Indicator Objects Reference

ShareScript Language Reference 96

Loading Alpha has started up, and is loading the indicator from the user

configuration files.

Editing The user has indicated they wish to edit the indicator.

Properties
storage The indicator’s Storage object, which provides a permanent storage

mechanism for data.

See section 5 of this reference for details. ShareScript v1.1

isIntraday A boolean that is true if your indicator is on an intraday chart, and

false if on a historical chart. ShareScript v1.1

ChartType Constants for setting the chart type for a data series, for use with the

setSeriesChartType() function.

ColourMode Constants for setting the colour mode of a data series, for use with

the setSeriesColourMode() function.

Layer Constants for setting the drawing layer. Only applies to main graph

indicators. ShareScript v1.31

Range Constants for setting the indicator y-axis range, for use with the

setRange() function.

Description

When you create a script for a ShareScript indicator, you need to specify a getGraph()

function, and (optionally) an init() function. These, and any other functions or variables you

define in the file will become properties of an Indicator object.

The values returned by getGraph() are plotted as one or more indicator data series for the

instrument. See the reference entry for Indicator.getGraph() for full details.

Note that the Indicator object is at the start of the scope chain when executing the code in

your indicator script. Thus a call to e.g. the load() method will call the current Indicator

object’s load() method, rather than the load() method in the global object.

Any functions you call that are not defined by your Indicator object will be resolved in the

next object in the scope chain (i.e. the global object).

Indicator scripts should be placed in your ShareScript/Indicators/ directory.

Directives

Indicator directives allow you to tell Alpha how to treat the indicator created by your script.

They are detailed here for completeness, although they are not technically part of the

ShareScript language (directives are placed inside comments, and are used by Alpha itself,

rather than the ShareScript interpreter). Directives take the form:

@Field:Value

The available fields and the values they can take are detailed below. Note that field names and

values are not case sensitive. Normally, you should place any directives you wish to use in a

comment, near the top of your ShareScript file.

FieldFieldFieldField Valid values/description

Indicator Objects Reference

ShareScript Language Reference 97

@Name Any text.

Alpha will use this value as the name of the indicator. This will

appear as the indicator title, and in the Add ShareScript Indicator

dialog.

e.g. //@Name:My Indicator

@Description Any text.

A description of what your Script does, which is displayed in the

Add ShareScript Indicator dialog.

e.g. //@Description:Custom MACD indicator

@Future Valid values are Yes or No.

Tells Alpha that your indicator getGraph() function will return data

longer than the data it was provided (i.e. your indicator projects

into the future). The default is No.

e.g. //@Future:Yes

@Type Valid values are Historical, Intraday or Both. ShareScript v1.1

Restricts the use of your indicator to the selected chart type. The

default is Both.

Indicator.ChartType

constants to specify available chart types for plotting a data series

Synopsis
ChartType.constant

Constants
Line A line graph (the default). Alpha will draw a line joining each value of the

data series. If there are undefined values at the beginning (or end) of the data

series, the line will start (or end) with the first (or last) valid value. Where

undefined values appear in the middle of the data, the indicator line will

simply join the defined values on either side.

Clouds A filled line graph. The area between the line and the y=0 line is filled.

Filled Another type of filled line graph. The area between the line and bottom of the

window is filled.

Histogram A histogram. The bar will be drawn from y=0 to the data series value. If a

value is undefined no bar is drawn.

Block A block graph. Similar to histogram, but with no gaps between the bars.

Background The data series is not plotted, but instead used to colour the background. The

colour mode will determine how a colour is chosen.

This mode works well with ColourMode.Graded. ShareScript v1.1

See Also
Indicator.setSeriesChartType()

Indicator Objects Reference

ShareScript Language Reference 98

Indicator.clearHorizontalLines()

remove any horizontal lines

Synopsis
clearHorizontalLines()

Description

The clearHorizontalLines() function will remove any horizontal lines that have been added

to the indicator with setHorizontalLine().

Horizontal lines allow you to illustrate key levels of an indicator to the user.

See Also
Indicator.setHorizontalLine()

Indicator.ColourMode

constants to specify available colour modes for plotting a data series

Synopsis
ColourMode.constant

Constants
Single A single colour is used for the plot (the default).

UpDown If the last change of the indicator was up, colour 1 is used. If down,

colour 2 is used.

PosNeg If the indicator value is >=0, colour 1 is used. If <0, colour 2 is used.

Graded A gradient of colours will be used for the plot, ranging from colour 1

(for the max value) to colour 2 (for the min value). ShareScript v1.1

See Also

Indicator.setSeriesColourMode(), Indicator.setRange()

Indicator.getBackColour()

get the background colour of the indicator’s window

Synopsis
getBackColour()

Returns

An integer representing the background colour of the indicator window.

Description

The getBackColour() function can be used to choose colours for the indicator data series plot,

such that it contrasts with the user-selected background colour of the indicator window.

See Also

Colour, Indicator.setSeriesColour()

Indicator Objects Reference

ShareScript Language Reference 99

Indicator.getBarLength() ShareScript v1.35

returns the chart’s bar period length

Synopsis
getBarLength()

Returns

A string encoding the bar period length.

Description

Call getBarLength() to find out the period (e.g. daily, weekly) of the bars passed to

getGraph(). The string returned by this function is in the same format as

Study.getBarLength(). It is only valid to call this function from an indicator’s getGraph()

method, not from init().

See Also
Study.getBarLength()

Indicator.getGraph()

method invoked when Alpha needs indicator data for an instrument

Synopsis
function getGraph(shareObj, data)

Arguments

shareObj The Share object that Alpha needs to generate indicator data for.

data An array of PriceData objects corresponding to the bars on the main chart.

The length of this array will vary depending on the length of the Share’s price

history and the user-selected bar width (e.g. daily or weekly).

Description

Alpha invokes an Indicator’s getGraph() method when it needs to generate data to plot the

indicator for an instrument. It passes the current instrument and OHLCV data that can be used

as input for the indicator.

When the indicator is added, the user can choose whether the data source is daily bars, weekly

bars, or uses the main graph time period (which can be a range of bar widths). The length of

the data array passed to getGraph() will reflect this choice.

Normally, the getGraph() function you write should return one (or more) data series of

exactly the same length as the input data. Alpha will report an error if the length is different.

However, you can use the @Future directive to disable this check and tell Alpha that you will

return data longer than the input data. This extra data will be displayed if “Show Future” is

enabled on the graph.

If you return a single array, this will be referred to as data series 0. You can return a single

array using code like this:

function getGraph(instr, data)
{

var x = new Array();

(add code that populates elements 0 to data.length-1 of x)

Indicator Objects Reference

ShareScript Language Reference 100

return x;
}

You can also return multiple sets of data from getGraph(). In this case you should return an

array of arrays. Each array will represent a separate data series, and can have its own chart

type and colour. However, all will share the same y-axis range. The first array returned will

be referred to as data series 0, the next is series 1, and so on. The maximum number of data

series allowed is now 32 (this was increased from 8).

When multiple data series are returned by an indicator, data series 0 is considered to be the

‘primary’ data series: it will be plotted on top of any others, and the indicator value (e.g. when

displayed as a watermark) will be the last data series 0 value.

In the following example, x is data series 0, y is data series 1 and z is data series 2.

function getGraph(instr, data)
{

var x = new Array();
var y = new Array();
var z = new Array();

(add code that initialises elements of x, y & z)

return [x,y,z];
}
An element of an array may be left (or explicitly set to) undefined. In this case the value will

treated as undefined by Alpha. See Indicator.ChartType for more details.

See Also

PriceData, Indicator.setSeriesChartType(), Indicator.setSeriesColour(),

Indicator.setSeriesColourMode(), Indicator.setSeriesLineStyle()

Indicator.init()

method invoked when an indicator is created

Synopsis
function init(status)

Arguments

status A parameter passed (by Alpha) telling you why Alpha is initialising the

indicator. This should be compared to the constants defined on the Indicator

object (e.g. Adding).

Returns

You should return a value of false if you don’t want the indicator to be added (or replaced).

See below for details.

Description

Alpha invokes an indicator’s init() method when an Indicator object is created by Alpha. It

is guaranteed to be called before any call to getGraph(). You do not need to supply an init()

method if you do not need one.

The init() method (and its return value) is handled by Alpha as follows:

When the user adds an indicator for the first time – Alpha creates a new Indicator object,

then calls init() with the status set to Adding. If init() returns false, the indicator is not

added, and the Indicator object is discarded.

Indicator Objects Reference

ShareScript Language Reference 101

When the user edits an indicator – Alpha will create a new Indicator object, and copy any

data in the original indicator’s storage area to the new object. It then calls the init() function

of the new Indicator object with the status set to Editing. If the init() function returns

false, the new indicator is discarded, and the user’s graph is left unchanged.

When Alpha loads, it will create an Indicator object for any ShareScript indicators on the

user’s graph. It will then call the init() function with a status of Loading. If the init()

function returns false, the indicator will be disabled (but will still be visible to the user).

Example

The following init() function sets the indicator title. Please refer to the Column.init() entry

for a more detailed example, including the use of dialog boxes for user input, the storage area,

and appropriate handling of the status parameter.

function init()
{
 setTitle("My indicator");
}

Indicator.Layer ShareScript v1.31

constants to specify a drawing layer

Synopsis
Layer.constant

Constants
Bottom The bottom drawing layer (beneath the bars and any analytics).

Top The top drawing layer (above the bars and any analytics).

See Also
Indicator.setLayer()

Indicator.Range

constants to control the indicator y�axis range

Synopsis
Range.constant

Constants
Dynamic Alpha will determine the y-axis range dynamically (the default). The y-

axis will accommodate the maximum and minimum values present across

all the data series.

CentreZero Range is dynamically determined, but y=0 will be in the centre.

MinMax The y-axis range is specified by a minimum and maximum value. You can

also leave either the minimum or maximum value undefined to have only

it dynamically determined (from the data). If Range.MinMax is used and

both minimum and maximum are left undefined, the behaviour is the

same as Range.Dynamic.

Parent Alpha should use the y-axis belonging to the parent graph. If no parent

graph exists, a Dynamic range is used.

Indicator Objects Reference

ShareScript Language Reference 102

Dynamic Alpha will determine the y-axis range dynamically (the default). The y-

axis will accommodate the maximum and minimum values present across

all the data series.

ParentMerge As Range.Parent but the range of the parent graph y-axis will be extended

(if necessary) to accommodate the values in the indicator data series.

See Also
Indicator.setRange()

Indicator.setHorizontalLine()

add a horizontal line to the indicator display at a given y�axis value

Synopsis
setHorizontalLine(value)

Arguments

value The y-axis value where a line should be placed.

Description

The setHorizontalLine() function adds a new horizontal line to the indicator display. You

can add as many lines as are required. These lines can illustrate key levels of an indicator to

the user. They can persist across multiple calls to getGraph(), or you can create new levels

individually for each new indicator plot.

Example
clearHorizontalLines();
for (var i = 0; i<=100; i+=10)
 setHorizontalLine(i);

See Also
Indicator.clearHorizontalLines()

Indicator.setLayer() ShareScript v1.31

determines whether a main graph indicator is drawn above or below the chart

Synopsis
setLayer(layer)

Arguments

layer A constant from the Indicator.Layer object specifying the target layer.

Description

The setLayer() function allows you to specify if a main graph indicator should be drawn

beneath the other main chart features (the default) or on top of them. Note that this setting

applies to the whole indicator, not to an individual data series. The draw ordering of data-

series within the indicator remains unchanged (see Indicator.getGraph for details).

Example
setLayer(Layer.Top); // draw above everything

Indicator Objects Reference

ShareScript Language Reference 103

See Also
Indicator.Layer

Indicator.setRange()

controls the y�axis range for the indicator window

Synopsis
setRange(rangeMode)
setRange(rangeMode, min, max)

Arguments

rangeMode A constant from the Indicator.Range object to select the desired y-axis range.

min Only required for Range.MinMax. A number specifying the minimum y-axis

value. If undefined, the minimum is determined dynamically.

max Only required for Range.MinMax. A number specifying the maximum y-axis

value. If undefined, the maximum is determined dynamically.

Description

By default, Alpha will calculate a y-axis range which will accommodate the values from all

the data series you return from getGraph(). You can use this function if you wish to specify a

different y-axis range behaviour.

Note that Alpha normally adds a small margin to the y-axis range, so the maximum and

minimum data values do not lie on the top and bottom edges of the graph. You can use the

Range.MinMax setting to switch off this behaviour and specify exactly the range required.

See Indicator.Range for more information about the available options for y-axis behaviour.

Example

This example sets the minimum y-axis value explicitly to 0, whilst allowing the maximum y-

axis value to be determined from the data being graphed:

setRange(Range.MinMax, 0, undefined);

See Also
Indicator.Range

Indicator.setSeriesChartType()

sets the chart type for a data series

Synopsis
setSeriesChartType(series, chartType)

Arguments

series An integer specifying the data series to change the chart type for (see

Indicator.getGraph() for information about data series numbering).

chartType A constant from the Indicator.ChartType object to select the desired chart

type.

Indicator Objects Reference

ShareScript Language Reference 104

Description

An indicator can consist of several data series plotted in different ways.

setSeriesChartType() allows you to specify how each individual data series is drawn by

Alpha.

See Indicator.ChartType for details of the available chart types.

Example
setSeriesChartType(0, ChartType.Histogram);

See Also

Indicator.ChartType, Indicator.setSeriesColour(), Indicator.setSeriesColourMode(),
Indicator.setSeriesLineStyle()

Indicator.setSeriesColour()

sets the colour(s) for a data series

Synopsis
setSeriesColour(series, colour1)
setSeriesColour(series, colour1, colour2)

Arguments

series An integer specifying the data series to change the plot colour for (see

Indicator.getGraph() for information about data series numbering).

colour1 An integer specifying the colour for the plot.

colour2 Optional. An integer specifying an alternative colour for the plot. This is used

when certain Indicator.ColourMode settings are active for the series.

Description

The setSeriesColour() function allows you to set the colour that a given data series should

be plotted in. The alternative colour is only used when certain colour modes are active. See

Indicator.setSeriesColourMode() for more details.

You can use the Indicator.getBackColour() to ensure that a colour is used that will contrast

with the indicator window background.

Example
setSeriesColour(0, Colour.Red);
setSeriesColour(1, Colour.RGB(128,255,192));

See Also

Colour, Indicator.setSeriesColourMode(), Indicator.getBackColour()

Indicator.setSeriesColourMode()

sets the colour mode for a data series

Synopsis
setSeriesColourMode(series, colourMode)

Indicator Objects Reference

ShareScript Language Reference 105

Arguments

series An integer specifying the data series to change the colour mode for (see

Indicator.getGraph() for information about data series numbering).

colourMode A constant from the Indicator.ColourMode object to select the desired colour

mode.

Description

The setSeriesColourMode() function allows you to set the colour mode for a data series. A

data series plot can be a single colour, or two colours which alternate. See

Indicator.ColourMode for the available colour mode options.

See Also

Indicator.ColourMode, Indicator.setSeriesColour()

Indicator.setSeriesLineStyle()

sets the line style for a data series

Synopsis
setSeriesLineStyle(series, pen)
setSeriesLineStyle(series, pen, width)

Arguments

series An integer specifying the data series to change the line style for (see

Indicator.getGraph() for information about data series numbering).

pen A constant from the Pen object specifying the type of pen to use.

width Optional. An integer giving the width of the pen. Valid values are 0 to 7. If not

specified this defaults to 0 (the thinnest line). Greater widths are only allowed

for a pen type of Pen.Solid.

Description

The setSeriesLineStyle() function allows you to select a pen that a data series plot will be

drawn with.

Line styles are only supported for a chart type of ChartType.Line. See

Indicator.setSeriesChartType() for more details.

Example
setSeriesLineStyle(0, Pen.Solid, 3);
setSeriesLineStyle(1, Pen.Dash);

See Also

Pen, Indicator.setSeriesColour(), Indicator.setSeriesChartType()

Indicator.setTitle()

sets the indicator window title

Synopsis
setTitle(s)

Indicator Objects Reference

ShareScript Language Reference 106

Arguments

s A string providing a name for the indicator window title

Description

The setTitle() function allows you to set the indicator’s title, displayed at the top of an

indicator window. You should normally call this method from the init() function.

Chart Study Objects Reference

ShareScript Language Reference 107

Chart Study Objects Reference

ChartStudy ShareScript v1.2

Alpha chart study interface Object�ChartStudy

Construction

Alpha manages the creation and destruction of ChartStudy objects after the user adds a chart

study script to a graph setting. They are not created using the normal JavaScript new()

operator.

Methods

A ChartStudy object has many methods you can call and six methods you can supply to create

a new ShareScript chart study (these are shown first below).

The load() method allows you to make library functions available within the ChartStudy

object, rather than defining them in the global object. This will prevent namespace collisions

when your study uses functions defined externally.

Methods You Supply

init() Optional. Alpha will call the ChartStudy object’s init() method

once when the object is first created.

onNewChart() Optional. Alpha will call the ChartStudy object’s onNewChart()

method whenever a new chart is about to be drawn.

onBarClose() Optional. Alpha will call the ChartStudy object’s onBarClose()

method once for each complete bar added to the chart.

onNewBarUpdate() Optional. Alpha will call the ChartStudy object’s onNewBarUpdate()

method whenever a new partial bar is created, or the existing partial

bar’s OHLCV values change.

onMouseClick() Optional. Alpha will call the ChartStudy object’s onMouseClick()

method if the study has input focus and the user clicks on the chart.

onZoom() Optional. Alpha will call the ChartStudy object’s onZoom() method

when the user changes the range of visible chart bars.

General Methods

load() Load and execute a ShareScript file in this study object. See the

global load() method for full details.

getBackColour() Returns the chart’s background colour.

getBarLength() Returns the chart’s bar period length.

getCurrentShare() Returns the charted instrument.

getMinVisibleBarIndex() Returns the index of the left-most (earliest) visible bar on the

chart.

getMaxVisibleBarIndex() Returns the index of the right-most (latest) visible bar on the

chart.

Study Panel Methods

setTitle() Set the study’s title.

Chart Study Objects Reference

ShareScript Language Reference 108

setInfoText() Set the study’s info text (displayed under the title).

createButton() Create a button on the study’s panel.

setButtonText() Set a panel button’s caption.

deleteButton() Delete a panel button.

deleteButtons() Delete all the panel buttons.

Drawing Control Methods

setAltRange() Set up an alternative y-axis range for drawing.

useAltRange() Enable or disable drawing using the alternative y-axis range.

setPenColour() Change the pen colour.

setPenStyle() Change the pen line style.

setBrushColour() Change the brush colour.

setFontColour() Change the font colour.

setFontStyle() Change the font style.

setFillMode() Change the fill mode.

setFrame() Set the target frame for drawing (i.e. main chart or volume area)

setLayer() Set the layer for drawing (i.e. above or below the main chart).

Drawing Methods

clearDisplay() Remove all drawn objects from the chart.

undrawItem() Remove a single drawn object from the chart.

moveTo() Move the cursor position.

lineTo() Draw a line from the cursor to a new position.

beginPath() Begin a path, for grouping together a series of lineTo()

commands.

endPath() End a path.

drawPath() Draw a completed path, using the current pen style.

fillPath() Fill a completed path, using the current brush.

drawAndFillPath() Draw and fill a completed path.

drawText() Add text to the chart.

drawTextEx() Add text, with additional control over the position.

drawSymbol() Draw a symbol on the chart.

drawSymbolEx() Draw a symbol, with additional control over the position.

drawShape() Draw a shape, using the current pen style.

fillShape() Fill a shape, using the current brush.

drawAndFillShape() Draw and fill a shape.

Chart Study Objects Reference

ShareScript Language Reference 109

Constants

These constants are defined on the study object, and can be used for comparison with the

status parameter passed to the init() function (see the init() method description for details):

Loading Alpha is creating a new ChartStudy object belonging to a chart

window.

Adding The user has added a new study to the setting.

Editing The user has indicated they wish to edit the study.

Properties
bars An array of Bar objects representing the chart bars.

This property is available in all ChartStudy methods, with the

exception of init() where it is undefined.

bar A Bar object representing the current bar - equivalent to

bars[barIndex].

This property is available in the onBarClose(), onNewBarUpdate()

and onMouseClick() methods. It is undefined elsewhere.

barIndex An integer, giving the index of the current bar in the bars array.

This property is available in the onBarClose(), onNewBarUpdate()

and onMouseClick() methods. It is undefined elsewhere.

isIntraday A boolean value that is true if your study is on an intraday chart,

and false if on a historical chart.

storage The study’s Storage object, which provides a permanent storage

mechanism for data. See section 5 of this reference for details.

BoxAlign Constants for positioning the bounding boxes of drawn objects, for

use with the drawText() and drawSymbol() functions.

FillMode Constants for specifying a fill mode, for use with the setFillMode()

function.

Frame Constants for specifying a particular frame of the chart, for use with

the setFrame() function.

Layer Constants for specifying a drawing layer, for use with the

setLayer() function.

TextAlign Constants for positioning text within its bounding box, for use with

the drawText() function.

Shape Constants for specifying a shape, for use with the drawShape()

function.

Symbol Constants for specifying a symbol, for use with the drawSymbol()

function.

Description

When you create a script for a ShareScript chart study, the functions and variables you define

in the script become methods and properties of a ChartStudy object. Alpha calls certain well-

defined ChartStudy methods in response to particular chart events, so by adding your own

code to these “event handler” methods, you can customise the behaviour of the chart.

Chart Study Objects Reference

ShareScript Language Reference 110

ChartStudy objects provide access to the chart bars through the bars, barIndex and bar

properties and provide methods that allow you to draw text, lines, shapes and symbols on the

chart.

Although the user adds a chart study script to a particular graph setting, Alpha will create a

new ChartStudy object for each chart window visible on the screen. This behaviour differs

from ShareScript columns (and indicators), where only one object is created from the script,

and this single object is responsible for returning the calculated values to all list (or chart)

windows sharing the setting.

This architecture, with individual study objects for each chart window, allows a much richer

customisation of charts, since studies can react to events (such as mouse or button clicks)

within specific charts, and maintain individual states in response to these and other events.

When the user first adds a study script to a graph setting, Alpha will first create a temporary

ChartStudy object that belongs to the setting, rather than a particular chart. This allows a

script to present a dialog box to the user to set up any custom parameters for the study. Your

script can store the user parameters to the ChartStudy storage area. This allows subsequent

ChartStudy objects, which will be created for each chart window, to retrieve the user’s

parameters from the storage area, rather than displaying the dialog again. Please refer to the

entry for ChartStudy.init() for more information.

Note that the ChartStudy object is at the start of the scope chain when executing the code in

your study script. Thus a call to e.g. the load() method will call the current ChartStudy

object’s load() method, rather than the load() method in the global object.

Any functions you call that are not defined by your ChartStudy object will be resolved in the

next object in the scope chain (i.e. the global object).

Chart study scripts should be placed in your ShareScript/Studies/ directory.

Directives

Study directives allow you to tell Alpha how to treat the study created by your script. They

are detailed here for completeness, although they are not technically part of the ShareScript

language (directives are placed inside comments, and are used by Alpha itself, rather than the

ShareScript interpreter). Directives take the form:

@Field:Value

The available fields and the values they can take are detailed below. Note that field names and

values are not case sensitive. Normally, you should place any directives you wish to use in a

comment, near the top of your ShareScript file.

FieldFieldFieldField Valid values/description

@Name Any text.

Alpha will use this value as the name of the study. This will appear

in the study’s panel, and in the Add ShareScript Study dialog.

e.g. //@Name:My Study

@Description Any text.

A description of what your Script does, which is displayed in the

Add ShareScript Study dialog.

e.g. //@Description:My customised bar colouring

@Type Valid values are Historical, Intraday or Both.

Restricts the use of your study to the selected chart type. The default

is Both.

Chart Study Objects Reference

ShareScript Language Reference 111

@Env Valid values are Development or Production

This directive modifies the environment Alpha provides to the user

to interact with the study. The default is Development.

When Production is selected –

(i) The “Refresh Script” command is removed from the menu

(ii) “Edit study” will not allow the user to select a different

script. It will instead call the Study’s init() method with

Editing status.

@Editable Valid values are Yes or No.

Applicable only with Production environment. This directive tells

Alpha whether to display the “Edit study” option. The default is

Yes.

ChartStudy.bar

Built�in property referring to the current bar

Synopsis
bar

Description

This property provides access to a Bar object representing the current chart bar. This property

is set during onBarClose(), onNewBarUpdate() and onMouseClick(). It is undefined elsewhere.

This property is functionally equivalent to bars[barIndex].

See Also

Bar, ChartStudy.bars, ChartStudy.barIndex

ChartStudy.barIndex

Built�in property giving the index of the current bar

Synopsis
barIndex
bars[barIndex]

Description

This property is of integer type and provides the index of the current bar. This property is set

during onBarClose(), onNewBarUpdate() and onMouseClick(). It is undefined elsewhere.

barIndex is always a valid index for the bars array (i.e. bars[barIndex] is always valid)

which will yield a Bar object representing the current bar.

See Also

Bar, ChartStudy.bar, ChartStudy.bars

Chart Study Objects Reference

ShareScript Language Reference 112

ChartStudy.bars

Built�in array property providing access to all chart bars

Synopsis
bars[]

Description

This property provides access an array of Bar objects representing all the chart bars. This

property is available in all methods, except init() where it is undefined.

The left-most bar on the chart is bars[0], the right-most is bars[bars.length-1]. The last bar

in the bars array may be a partial rather than a complete bar (you can use the Bar object’s

isComplete property to check).

See Also

Bar, ChartStudy.bars, ChartStudy.barIndex, ChartStudy.getBarLength()

ChartStudy.beginPath()

start accumulating line drawing commands into a path

Synopsis
beginPath()

Description

A path is a set of line segments, where the end of each line segment is the starting point of the

next (i.e. there are no breaks in a path). Alpha can draw a path much faster than it could draw

the individual line segments.

The beginPath() function tells the drawing system to start building a path. Until endPath() is

called, all subsequent lineTo() commands will add the line segment to the current path,

rather than drawing a line. When a path has been defined, it can be drawn using the

drawPath(), fillPath() or drawAndFillPath() commands.

When beginPath() is called, the cursor positon will become the starting point of the path. If a

path already exists when beginPath() is called, any existing contents will be removed.

Example

The following extract from a script draws a box around the second bar, using a path.

beginPath();
moveTo(0.5, bars[1].high);
lineTo(1.5, bars[1].high);
lineTo(1.5, bars[1].low);
lineTo(0.5, bars[1].low);
lineTo(0.5, bars[1].high);
endPath();
drawPath();

See Also

ChartStudy.moveTo(), ChartStudy.lineTo(), ChartStudy.endPath(), ChartStudy.drawPath()

Chart Study Objects Reference

ShareScript Language Reference 113

ChartStudy.BoxAlign

constants for bounding box alignment

Synopsis
BoxAlign.constant

Constants
Left Horizontally aligns the box to the left of the specified x position.

Right Horizontally aligns the box to the right of the specified x position.

Center/Centre Horizontally aligns the box centred on the specified x position.

Above Vertically aligns the box above the specified y position.

Below Vertically aligns the box below the specified y position.

VCenter/VCentre Vertically aligns the box centred on the specified y position.

Description

These constants determine the how the bounding box for text or a symbol will be positioned

relative to the point you specify when drawing the object.

You can combine these constants using the bitwise OR operator (|) to specify both horizontal

and vertical positioning. If you fail to specify horizontal and/or vertical alignment then the

default behaviour is to centre on that axis.

The figure below illustrates the positioning of a text box (grey rectangle) relative to the (x,y)

position specified (black dot) for the drawText() function under all valid combinations of the

above constants:

 LeftLeftLeftLeft CentreCentreCentreCentre RightRightRightRight

AboveAboveAboveAbove

VCentreVCentreVCentreVCentre

BelowBelowBelowBelow

See Also

ChartStudy.drawText(), ChartStudy.drawSymbol()

ChartStudy.clearDisplay()

remove all drawn objects from the chart

Synopsis
clearDisplay()

Chart Study Objects Reference

ShareScript Language Reference 114

Description

A script can use the clearDisplay() function to remove anything previously drawn on the

chart. This function does not effect the study’s panel, which will remain unchanged.

Note that Alpha automatically removes all script-drawn objects from the chart before it calls a

study’s onNewChart() method, so clearDisplay() is only needed if you want clear the display

in response to a different event.

If you want to only remove a subset of the drawn objects, the undrawItem() function can be

used instead.

See Also
ChartStudy.undrawItem()

ChartStudy.createButton()

adds a button to the study’s panel

Synopsis
createButton(caption, func)

Arguments

caption The label for the button (a string).

func A function (defined in the study object) to be called when the button is

clicked.

Returns

The newly created button’s handle (an integer).

Description

The createButton() function creates and adds a button to the study’s panel, and associates it

with a study object method that will be called whenever the user clicks on the button. It

returns a handle which can later be used to change the button’s caption or remove the button

from the panel. The return value can be ignored if your script has no need to refer to the

button later in the script.

The callback method you define is expected to have an arity of zero (i.e. it should not accept

any parameters) – see the buttonCallback function in the example below.

Example

The following script adds a button to the study’s panel and prints a message to the console

when that button clicked. The button handle is retained using a variable with study object

scope, so it could be used to refer to the button at a later time (not illustrated in this example).

var handle;

function init()
{

handle = createButton("my label", buttonCallback);
}

function buttonCallback()
{
 print("button was clicked!");
}

Chart Study Objects Reference

ShareScript Language Reference 115

See Also

ChartStudy.setButtonText(), ChartStudy.deleteButton(), ChartStudy.setInfoText()

ChartStudy.deleteButton()

remove a button from the study’s panel

Synopsis
deleteButton(handle)

Arguments

handle The handle of the button to delete from the panel (an integer).

Returns

A boolean value – true if the button was found and removed, false otherwise.

Description

The deleteButton() function removes a previously created button from the study’s panel. To

remove all the buttons from a panel at once, consider using deleteButtons() instead.

See Also

ChartStudy.createButton(), ChartStudy.deleteButtons()

ChartStudy.deleteButtons()

remove all buttons from the study’s panel

Synopsis
deleteButtons()

Description

The deleteButtons() function removes all previously created buttons from the study’s panel.

See Also

ChartStudy.createButton(), ChartStudy.deleteButton()

ChartStudy.drawAndFillPath()

draws and fills a path on the chart

Synopsis
drawAndFillPath()

Returns

An integer giving the handle of the path (which can be used to later undraw the path), or

undefined if the path was invalid.

Chart Study Objects Reference

ShareScript Language Reference 116

Description

The drawAndFillPath() function is almost identical to drawPath(), except that the path is

additionally filled using the current brush and fill-mode. Please see the entry for drawPath()

below for further information.

See Also

ChartStudy.drawPath(), ChartStudy.fillPath(), ChartStudy.FillMode

ChartStudy.drawAndFillShape()

draws and fills a shape on the chart

Synopsis
drawAndFillShape(x1, y1, x2, y2, shape)
drawAndFillShape(x1, y1, x2, y2, shape, ratio)

Arguments

All arguments as for drawShape().

Returns

As for drawShape().

Description

The drawAndFillShape() function is almost identical to drawShape(), except that the shape is

additionally filled using the current brush and fill-mode. Please see the entry for drawShape()

below for further information.

See Also

ChartStudy.Shape, ChartStudy.drawShape(), ChartStudy.fillShape(), ChartStudy.FillMode

ChartStudy.drawPath()

draw a path on the chart

Synopsis
drawPath()

Returns

An integer giving the handle of the path (which can be used to later undraw the path), or

undefined if the path was invalid.

Description

The drawPath() function draws the current path onto the chart using the current pen. Use

fillPath() or drawAndFillPath() to draw filled paths (using the current brush).

The drawPath() function can return undefined if the path is invalid i.e. if it contains no line

segments.

For an full path drawing example please see the beginPath() function.

See Also

ChartStudy.beginPath(), ChartStudy.fillPath(), ChartStudy.drawAndFillPath()

Chart Study Objects Reference

ShareScript Language Reference 117

ChartStudy.drawShape()

draws a shape on the chart

Synopsis
drawShape(x1, y1, x2, y2, shape)
drawShape(x1, y1, x2, y2, shape, ratio)

Arguments

x1 The start point x-coordinate. See ChartStudy.moveTo() for the different ways

an x-coordinate can be specified.

y1 The start point y-coordinate.

x2 The end point x-coordinate

y2 The end point y-coordinate

shape A constant from the ChartStudy.Shape object specifying the shape to draw.

ratio A number giving the ratio of width to length. If not specified, the default is

0.5.

Returns

An integer giving the handle of the shape (which can be used to later undraw the shape).

Description

The drawShape() function draws a shape on the chart. Unlike symbols, which are drawn at a

single point, shapes can be used to highlight a series of bars or other features that stretch

across time.

drawShape() is used to draw the outline of the shape using the current pen. Use fillShape()

or drawAndFillShape() to draw filled shapes (using the current brush).

The shape is specified by providing a start point and an end point. These points specify the

mid-point of each end of the bounding rectangle defining the shape (see below for an

illustration). The ratio parameter is the ratio of the width to length of the rectangle.

Width/Length Ratio 0.5 Width/Length Ratio 0.1

Shapes are a useful and easy way for a script to highlight a trend or period on the chart. For

more flexible polygon drawing, consider using a path instead.

Example

The following example draws an arrow from the bar with index 5 to the bar with index 10

(similar to the illustration above).

drawShape(5, bars[5].high, 10, bars[10].high, Shape.Arrow, 0.5);

(x1,y1)

(x2,y2)

(x1,y1)

(x2,y2)

Chart Study Objects Reference

ShareScript Language Reference 118

See Also

ChartStudy.Shape, ChartStudy.fillShape(), ChartStudy.drawAndFillShape()

ChartStudy.drawSymbol()

draws a symbol on the chart

Synopsis
drawSymbol(x, y, symbol)
drawSymbol(x, y, symbol, char, boxAlign, size, isFilled)

Arguments

x The symbol’s x-coordinate. See ChartStudy.moveTo() for the different ways

an x-coordinate can be specified.

y The symbol’s y-coordinate.

symbol A constant from the ChartStudy.Symbol object specifying the symbol to draw.

char An optional single character string which will be shown inside the symbol.

Pass null or undefined if you don’t want a character inside (the default).

boxAlign An optional integer value specifying the alignment of the symbol relative to

the point specified by the (x,y) parameters.

This should normally be two of the constants defined by the

ChartStudy.BoxAlign object combined using the bitwise “or” operator (|). If

not specified, the symbol will be centred on the point.

size An optional integer giving the size of the symbol in pixels (the default is 16).

isFilled An optional boolean value specifying whether the symbol should be filled

using the current brush colour (the default is true).

Returns

An integer giving the handle of the symbol (which can be used to later undraw the symbol).

Description

The drawSymbol() function draws a symbol on the chart. Symbols can be used to annotate the

chart or highlight certain features. Alpha uses symbols to show events, swing and candlestick

patterns. Unlike shapes, the size of a symbol is specified in pixels, and the drawn size remains

constant irrespective of the size of the chart window.

Symbols are drawn with the current pen and (optionally) filled using the current brush. If you

specify a character to be displayed in the symbol, this will be drawn using the current font

style and colour (note that the font size is not used – Alpha will scale the font such that the

character fits inside the symbol). Not all symbols are designed to have text drawn inside (e.g.

the cross symbol does not work well with text).

Symbols are positioned relative to the specified (x,y) position using the boxAlign parameter.

See ChartStudy.drawText() for more information about this parameter.

Example

The example below draws a red downwards pointing flag symbol with an “A” character

inside, centred above the high of bar index 5. By default the symbol is 16 pixels in size.

setBrushColour(Colour.Red);
drawSymbol(5, bars[5].high, Symbol.FlagDown, "A", BoxAlign.Centre|BoxAlign.Above);

Chart Study Objects Reference

ShareScript Language Reference 119

See Also

ChartStudy.Symbol, ChartStudy.BoxAlign, ChartStudy.drawText()

ChartStudy.drawSymbolEx()

draws a symbol on the chart with additional control over the position

Synopsis
drawSymbolEx(x, y, xOffset, yOffset, symbol)
drawSymbolEx(x, y, xOffset, yOffset, symbol, char, boxAlign, size, isFilled)

Arguments

All arguments as for drawSymbol(), with the addition of:

xOffset An integer giving a pixel offset to the x-coordinate. Negative values offset to

the left, positive values offset to the right.

yOffset An integer giving a pixel offset to the y-coordinate. Negative values offset

upwards, positive values downwards.

Returns

An integer giving the handle of the symbol (which can be used to later undraw the symbol).

Description

The drawSymbolEx() function is almost identical to the drawSymbol() function, but takes two

additional arguments which allow you to refine the symbol position on the chart by adding

pixel-based offsets to the x and y positions (which are based on date/time and value). This

allows you to position the symbol e.g. just above a bar, rather than exactly aligned with it.

See Also
ChartStudy.drawSymbol()

ChartStudy.drawText()

draws text on the chart

Synopsis
drawText(x, y, str)
drawText(x, y, str, boxAlign, textAlign, isFilled, isBoxed)

Arguments

x The text’s x-coordinate. See ChartStudy.moveTo() for the different ways an x-

coordinate can be specified.

y The text’s y-coordinate.

str The text to draw (a string).

boxAlign An optional integer value specifying the alignment of the text box relative to

the point specified by the (x,y) parameters.

This should normally be two of the constants defined by the

ChartStudy.BoxAlign object combined using the bitwise “or” operator (|). If

not specified, the text box will be centred on the point.

textAlign An optional integer value specifying how the draw should be aligned within

Chart Study Objects Reference

ShareScript Language Reference 120

its bounding box.

This value should be a constant defined by the ChartStudy.TextAlign object.

If not specified, the text will be left-aligned within its bounding box.

isFilled An optional boolean value specifying whether the text’s bounding box should

be filled using the current brush colour (the default is false).

IsBoxed An optional boolean value specifying whether the edge of the text’s bounding

box should be drawn using the current pen (the default is false).

Returns

An integer giving the handle of the text object (which can be used to later undraw the text).

Description

The drawText() function draws text to the chart using the current font. The text can be single

line of text, or can span multiple lines if the str parameter includes ‘\n’ (newline) characters.

Alpha calculates a bounding box that will exactly fit around the text, which can (optionally)

be drawn and filled using the current pen and brush. This box is positioned relative to the

specified (x,y) position using the boxAlign parameter.

If you are drawing text that spans multiple lines, you can also decide how the text is formatted

within the bounding box using the textAlign parameter (a single line of text will fit exactly

within the bounding box).

Example

The following example draws the multi-line text box illustrated below. The box will be

positioned above and left of the specified position (shown as a black circle in the illustration).

drawText(20, bars[20].high, "Example multi-line\ntext box",
BoxAlign.Left|BoxAlign.Above, TextAlign.Left, true, true);

See Also

ChartStudy.setFontStyle(), ChartStudy.BoxAlign, ChartStudy.TextAlign,
ChartStudy.drawTextEx()

ChartStudy.drawTextEx()

draws text on the chart with additional control over the position

Synopsis
drawTextEx(x, y, xOffset, yOffset, str)
drawTextEx(x, y, xOffset, yOffset, str, boxAlign, textAlign, isFilled, isBoxed)

Arguments

All arguments as for drawText(), with the addition of:

xOffset An integer giving a pixel offset to the x-coordinate. Negative values offset to

the left, positive values offset to the right.

yOffset An integer giving a pixel offset to the y-coordinate. Negative values offset

upwards, positive values downwards.

Example multi-line
text box

Chart Study Objects Reference

ShareScript Language Reference 121

Returns

An integer giving the handle of the text object (which can be used to later undraw the text).

Description

The drawTextEx() function is almost identical to the drawText() function, but takes two

additional arguments which allow you to refine the text bounding box position on the chart by

adding pixel-based offsets to the x and y positions (which are based on date/time and value).

This allows you to position text e.g. just above a bar, rather than exactly aligned with it.

See Also
ChartStudy.drawText()

ChartStudy.endPath()

stop accumulating line drawing commands into a path

Synopsis
endPath()

Description

The endPath() function tells the drawing system to stop accumulating lineTo() commands

into the current path. When a path has been defined by a call to endPath(), it can then be

drawn using the drawPath(), fillPath() or drawAndFillPath() commands.

For an full path drawing example please see the beginPath() function.

See Also

ChartStudy.beginPath(), ChartStudy.drawPath(), ChartStudy.fillPath(),
ChartStudy.drawAndFillPath()

ChartStudy.FillMode

constants to specify a fill mode

Synopsis
FillMode.constant

Constants
Solid Solid fill mode.

Anything underneath the filled object will not be visible.

Transparent Transparent fill mode.

The background will partially show through the filled object. Note that a

logical operation (rather than alpha-blending) is used to combine the

background and fill colour.

See Also

ChartStudy.setFillMode(), ChartStudy.setBrushColour()

Chart Study Objects Reference

ShareScript Language Reference 122

ChartStudy.fillPath()

draws a filled path on the chart

Synopsis
fillPath()

Returns

An integer giving the handle of the path (which can be used to later undraw the path), or

undefined if the path was invalid.

Description

The fillPath() function is almost identical to drawPath(), except that the path’s outline is

not drawn – instead the path is filled using the current brush and fill-mode. Please see the

earlier entry for drawPath() for further information.

See Also

ChartStudy.drawPath(), ChartStudy.drawAndFillPath(), ChartStudy.FillMode

ChartStudy.fillShape()

draws a filled shape on the chart

Synopsis
fillShape(x1, y1, x2, y2, shape)
fillShape(x1, y1, x2, y2, shape, ratio)

Arguments

All arguments as for drawShape().

Returns

As for drawShape().

Description

The fillShape() function is almost identical to drawShape(), except that the shape’s outline

is not drawn – instead the shape is filled using the current brush and fill-mode. Please see the

earlier entry for drawShape() for further information.

See Also

ChartStudy.Shape, ChartStudy.drawShape(), ChartStudy.drawAndFillShape(),
ChartStudy.FillMode

ChartStudy.Frame

constants to specify a chart frame

Synopsis
Frame.constant

Constants
Chart The main share price frame of the chart window.

Volume The volume frame of the chart window (beneath the price frame).

Chart Study Objects Reference

ShareScript Language Reference 123

See Also
ChartStudy.setFrame()

ChartStudy.getBackColour()

get the background colour of the chart window

Synopsis
getBackColour()

Returns

An integer representing the background colour of the chart window.

Description

The getBackColour() function can be used to choose colours for a study such that they

contrast with the user-selected background colour of the chart window. Note that Alpha will

call onNewChart() if the user changes the background colour after the study has been added to

the chart.

See Also

Colour, ChartStudy.setPenColour(), ChartStudy.setBrushColour(),
ChartStudy.setFontColour()

ChartStudy.getBarLength()

returns the chart’s bar period length

Synopsis
getBarLength()

Returns

A string encoding the bar period length.

Description

The getBarLength() function returns the chart’s bar period length. This is encoded as string,

with the period length (a number) first, followed by a single character that describes the units

(e.g. “2w” for 2 week bars).

The possible unit values are:

s Seconds. Intraday charts always report the bar period length in seconds. e.g.

“60s” will be returned for one minute bars.

d Days.

w Weeks.

m Months.

Example

The example below shows you how to extract the period and unit from the string returned by

getBarLength():

var period = parseInt(getBarLength());
var unit = getBarLength().slice(-1);

Chart Study Objects Reference

ShareScript Language Reference 124

See Also

Bar, ChartStudy.bars

ChartStudy.getCurrentShare()

returns a study’s current charted instrument

Synopsis
getCurrentShare()

Returns

A Share object representing the study’s current instrument.

Description

The getCurrentShare() function returns the current instrument for the chart window that the

study is attached to. The current share is undefined when Alpha calls the ChartStudy’s

init() method.

Note that this function can also return undefined when the chart is not displaying a valid

instrument (e.g. synthetic data mode).

See Also
Share

ChartStudy.getMaxVisibleBarIndex()

returns the index of the right�most visible bar

Synopsis
getMaxVisibleBarIndex()

Returns

An integer, giving the maximum bar index currently displayed.

Description

The getMaxVisibleBarIndex() function returns the index of the right-most bar in the window.

The associated Bar object can be retrieved by using the return value of this function as in

index into the bars array.

This function is generally useful when your script defines an onZoom() method.

Example

The following example prints the close value for the last visible bar to the console:

var lastBar = bars[getMaxVisibleBarIndex()];
print(lastBar.close);

See Also

ChartStudy.bars, ChartStudy.onZoom(), ChartStudy.getMinVisibleBarIndex()

Chart Study Objects Reference

ShareScript Language Reference 125

ChartStudy.getMinVisibleBarIndex()

returns the index of the left�most visible bar

Synopsis
getMinVisibleBarIndex()

Returns

An integer, giving the minimum bar index currently displayed.

Description

The getMinVisibleBarIndex() function returns the index of the left-most bar in the window.

This will be 0 if the user has not zoomed into the chart. The associated Bar object can be

retrieved by using the return value of this function as in index into the bars array.

This function is generally useful when your script defines an onZoom() method.

See Also

ChartStudy.bars, ChartStudy.onZoom(), ChartStudy.getMaxVisibleBarIndex()

ChartStudy.init()

method invoked when a study is created

Synopsis
function init(status)

Arguments

status A parameter passed (by Alpha) telling you why Alpha is initialising the study.

This should be compared to the constants defined on the ChartStudy object

(e.g. Adding).

Returns

You should return a value of false if you don’t want the study to be added (or replaced). See

below for details.

Description

Alpha invokes a study’s init() method when an ChartStudy object is created by Alpha. It is

guaranteed to be called before any other method call. You do not need to supply an init()

method if you do not need one.

In general there are few practical differences in the use of a study’s init() method compared

to the init() method of columns and indicators. The status parameter passed to init() will

be:

• Adding when the user adds a new study to the chart setting. Returning false from

init() will cause the study not to be added.

• Editing when the user has indicated they wish to edit a study. Returning false will

cause the edit operation to be cancelled.

• Loading when Alpha is creating a new ChartStudy object belonging to a chart

window. A study should not return false from init() in this case.

Chart Study Objects Reference

ShareScript Language Reference 126

Example

Please refer to the Column.init() entry for a detailed example, including the use of dialog

boxes for user input, the storage area, and appropriate handling of the status parameter.

ChartStudy.Layer

constants to specify a drawing layer

Synopsis
Layer.constant

Constants
Bottom The bottom drawing layer (beneath the bars and any analytics).

Top The top drawing layer (above the bars and any analytics).

See Also
ChartStudy.setLayer()

ChartStudy.lineTo()

draws a line, or adds a line segment to a path

Synopsis
lineTo(x, y)

Arguments

x The line’s end point (x-coordinate).

See ChartStudy.moveTo() for the different ways an x-coordinate can be

specified.

y The line’s end point (y-coordinate).

Returns

An integer giving the handle of the line (which can be used to later undraw the line). If you

are currently drawing a path, the return value is undefined.

Description

The lineTo() function draws a line from the current cursor position to the point specified by

the lineTo() parameters. The line is drawn using the current pen.

lineTo() is also used when drawing a path (see the beginPath() function) to add a line

segment to the current path.

Examples

The example below draws a line joining the high of the first bar and the low of the second

bar:

moveTo(0, bars[0].high);
lineTo(1, bars[1].low);

See Also

ChartStudy.moveTo(), ChartStudy.beginPath(), ChartStudy.setPenColour()

Chart Study Objects Reference

ShareScript Language Reference 127

ChartStudy.moveTo()

moves the drawing cursor

Synopsis
moveTo(x, y)

Arguments

X The new x-axis position can be specified in any one of the following ways:

(i) as a number, giving the position as a bar index

(ii) as a JavaScript Date object

(iii) as a 2 element array of [dateNum, timeNum]

Y A number giving the new y-axis position

Description

The moveTo() function moves the cursor position which acts as a starting point for a line

drawn using the lineTo() function. Note that there is only a single cursor across all chart

frames.

The x-coordinate of the new position can be specified using any one of three methods. The

simplest (and fastest for Alpha to plot) is to use a bar index. If this is an integer value, it will

correspond to the centre of a bar. e.g. 0 is the centre of the first bar, 1 is the centre of the

second bar, and 0.5 is the point midway between the centres of the two bars (note that,

consistent with this scheme, a value of –0.5 will give you a point to the left of the first bar,

should you need it).

The other two methods allow date/time based plotting. Firstly, you can use JavaScript Date

objects – unfortunately these are slow. Alternatively use a 2-element array of dateNum and

timeNum – this is a much faster way to plot date/time based data.

Examples of all 3 methods are given below.

Note that if you are currently drawing a path (see the beginPath() function), issuing a

moveTo() command will not end the path, but will delete any existing path contents.

Examples

The examples below move the cursor to the high of the first bar on the chart, using the 3

alternative methods for specifying the x-coordinate.

moveTo(0, bars[0].high); // using a bar index
moveTo(bars[0].date, bars[0].high); // using a Date object
moveTo([bars[0].dateNum, bars[0].timeNum], bars[0].high); // using dateNum,timeNum

See Also

ChartStudy.lineTo(), ChartStudy.beginPath()

ChartStudy.onBarClose()

method invoked when a complete bar is formed on the chart

Synopsis
function onBarClose(preExisting)

Arguments

preExisting This parameter will be true if the bar existed in Alpha’s database when

Chart Study Objects Reference

ShareScript Language Reference 128

onNewChart() was called.

Description

Alpha will call a study’s onBarClose() method once, in time order, for every complete bar on

the chart. You can access information about the current bar using the built-in bar and

barIndex properties which are defined when this method is called. You can also use the built-

in bars array to access information about any bar on the chart from onBarClose().

A complete bar is a bar which has stopped accumulating data – i.e. its OHLCV values are

fixed and will not change. During market hours, the rightmost (i.e. latest) bar on an intraday

chart is generally not a complete bar. onBarClose() will be called for these bars only when

they become complete (you can use onNewBarUpdate() if you want to be informed about new

and updated partial bars).

After calling onNewChart(), Alpha will call onBarClose() for each of the complete bars that

already exist in Alpha’s database. Alpha passes a boolean value (preExisting) to

onBarClose() which will be true, to indicate that these bars were already present in the bars

array when Alpha called onNewChart().

If you are connected to the intraday feed, additional bars will be formed on the chart every

few minutes (depending on the bar period selected). Alpha will call onBarClose() for these

new bars as they become complete. In this case, preExisting will be false, to indicate that

this is a new bar, that was not present in the bars array when onNewChart() was called.

A full introduction to using the onNewChart(), onBarClose() and onNewBarUpdate() methods

together can be found in the ShareScript User Guide.

Example

The following script shows how to use bar, bars and barIndex in onBarClose() to colour each

bar based on its close relative to the previous bar’s close.

function onBarClose()
{
 if (barIndex == 0) // the first bar has no previous bar, so return

return;
 if (bar.close > bars[barIndex-1].close)
 bar.colour = Colour.Green;
 else
 bar.colour = Colour.Black;
}

See Also

ChartStudy.onNewBarUpdate(), ChartStudy.bar, ChartStudy.barIndex, ChartStudy.bars

ChartStudy.onMouseClick()

method invoked when the user clicks on the chart

Synopsis
function onMouseClick(frame, date, value, altValue)

Arguments

frame A parameter passed (by Alpha) telling you which frame of the chart the user

clicked in. This can be compared to the constants defined by

ChartStudy.Frame.

date A JavaScript date object indicating the date/time where the click occurred (x-

Chart Study Objects Reference

ShareScript Language Reference 129

axis value).

value A number indicating where on the value (y-axis) the user clicked. This will

normally be a price (when the frame is Frame.Chart).

altValue If the script defines an alternative y-axis range, this will return the alternative

y-axis value. Otherwise, this value will be undefined.

Returns

You should return true if you handled the user’s mouse click in your script, false if you

didn’t. Returning false allows Alpha to respond to the mouse click.

Description

Alpha will call a study’s onMouseClick() method if the user clicks in the chart, and the study

has input focus. The user can give a study input focus by clicking on the study’s panel.

Alpha passes a number of parameters to the method call that will inform the script exactly

where the user clicked.

Additionally, the study’s bar and barIndex properties will also be defined if the user clicked

on one of the chart’s bars (or undefined if not). See ChartStudy.bar for more information and

the example below.

If your script handles the click, you should usually return true from this method. Your script

should also normally provide some sort of visual feedback to the user in response to the click.

Otherwise, return false to allow Alpha’s default click handler to be called.

Example

The following example shows a bar’s close in the study’s panel when the user clicks on a bar.

Since it does not use any of the parameters passed to the onMouseClick() method, they are not

required to be listed by the function declaration.

function onMouseClick()
{
 if (!bar)

return false; // if the user didn’t click on a bar
 else
 {
 setInfoText(bar.close);
 return true; // tell Alpha we handled the click
 }
}

See Also

ChartStudy.Frame, ChartStudy.bar, ChartStudy.setAltRange()

ChartStudy.onNewBarUpdate()

method invoked when a partial bar is added to the chart or the partial bar changes

Synopsis
function onNewBarUpdate(preExisting)

Arguments

preExisting This parameter will be true if the bar existed in Alpha’s database when

onNewChart() was called, and it has not changed since then.

Chart Study Objects Reference

ShareScript Language Reference 130

Description

A study’s onNewBarUpdate() method is called to tell you about changes to the newest partial

bar at the right-hand side of the chart. It is called when a new partial bar is created or when

that bar changes. It will be followed by a call to onBarClose() when the bar completes.

You can access information about the current partial bar using the built-in bar and barIndex

properties which are defined when this method is called. You can also use the built-in bars

array to access information about any bar on the chart from onNewBarUpdate().

A full introduction to using the onNewChart(), onBarClose() and onNewBarUpdate() methods

together can be found in the ShareScript User Guide.

See Also

ChartStudy.onBarClose(), ChartStudy.bar, ChartStudy.barIndex, ChartStudy.bars

ChartStudy.onNewChart()

method invoked when a new chart is about to be displayed

Synopsis
function onNewChart()

Description

Alpha invokes an study’s onNewChart() method when a new chart is about to be displayed.

This happens when the user changes the charted instrument, or if the bar period changes (e.g.

from 1 day bars to 1 week bars).

The chart is cleared of any previously drawn objects when Alpha invokes onNewChart(). The

study’s panel however, is left unchanged.

The new chart’s bars are available for inspection or manipulation through the ChartStudy’s

bars property.

After onNewChart() returns it will be immediately followed by a call to onBarClose() for each

complete bar in the bars array. If there is a partial (i.e. incomplete) bar at the end of the bars

array, a call to onNewBarUpdate() will follow the calls to onBarClose().

Example

The following example uses the ChartStudy’s bars array to search for highest price, then

displays it on the study’s panel:

function onNewChart()
{
 var max = 0;
 for (var i=0; i<bars.length; i++)
 {
 if (bars[i].high > max)
 max = bars[i].high;
 }
 setInfoText("max price="+max);
}

See Also

ChartStudy.bars, ChartStudy.onBarClose()

Chart Study Objects Reference

ShareScript Language Reference 131

ChartStudy.onZoom()

method invoked when the user zooms into or out of the chart

Synopsis
function onZoom()

Description

Alpha invokes a study’s onZoom() method when the user changes the displayed bars by either

zooming into (or out of) the chart using the mouse, or by selecting the “limit date range”

command.

You can retrieve the index of the left-most visible bar using getMinVisibleBarIndex() and the

right-most bar using getMaxVisibleBarIndex().

Note that onZoom() is not called when you are connected to the intraday feed and new bars are

added to an intraday chart. onBarClose() and onNewBarUpdate() will be called as the new bars

are formed, and this will be reflected in the right-most bar index returned by

getMaxVisibleBarIndex() if it is called from these methods.

See Also

ChartStudy.getMinVisibleBarIndex(), ChartStudy.getMaxVisibleBarIndex()

ChartStudy.setAltRange()

set an alternative y�axis for the current chart frame

Synopsis
setAltRange(min, max)

Arguments

min A number giving the minimum value to be accommodated on the y-axis

(corresponding to the bottom of the frame).

max A number giving the maximum value to be accommodated on the y-axis

(corresponding to the top of the frame).

Description

Each frame has a distinct primary y-axis, which Alpha determines automatically from the

range of data in the frame. You can also specify an alternative y-axis for the current target

frame using the setAltRange() function.

Objects drawn by the script are normally plotted with reference to the primary y-axis of the

target frame. When the alternative range is enabled (using the useAltRange() function), the y-

coordinates of any drawn object are interpreted relative to the alternative y-axis, instead of the

primary y-axis.

Note that the alternative y-axis is not shown on the chart, it is simply used to position objects

drawn by the script within the chart frame.

Example

The example below sets up an alternative y-axis, running from 0 to 1. It then draws a line

(centred on the first bar) from 10% above the bottom of the chart to 10% below the top.

The position of this line will remain constant within the frame, even when Alpha chooses a

new range for the frame’s primary y-axis e.g. when zooming into the chart.

Chart Study Objects Reference

ShareScript Language Reference 132

setAltRange(0, 1);
useAltRange(true);
moveTo(0, 0.1);
lineTo(0, 0.9);

See Also

ChartStudy.useAltRange(), ChartStudy.setFrame()

ChartStudy.setBrushColour()

set the brush colour for drawing

Synopsis
setBrushColour(colour)

Arguments

colour An integer specifying the new brush colour.

Description

The setBrushColour() function sets the brush colour to be used for subsequent drawing

commands. The brush is used to fill the interior of paths, shapes, symbols and text boxes. A

study’s default brush is a medium grey colour.

Examples
setBrushColour(Colour.Red);
setBrushColour(Colour.RGB(128,255,192));

See Also

Colour, ChartStudy.setPenColour(), ChartStudy.setFillMode()

ChartStudy.setButtonText()

change the caption of an existing button on the study’s panel

Synopsis
setButtonText(handle, caption)

Arguments

handle The handle of the panel button to change (an integer).

caption The new label for the button (a string).

Returns

A boolean value – true if the button was found and changed, false otherwise.

Description

The setButtonText() function changes the caption of a previously created button on the

study’s panel.

See Also

ChartStudy.createButton(), ChartStudy.deleteButton()

Chart Study Objects Reference

ShareScript Language Reference 133

ChartStudy.setFillMode()

selects whether a solid or transparent fill is used for drawing filled objects

Synopsis
setFillMode(mode)

Arguments

mode A constant from the ChartStudy.FillMode object specifying the fill mode for

subsequent drawing commands.

Description

When you use a drawing command that produces a filled shape or path, it will be filled using

the current brush colour. The setFillMode() function allows you to also specify whether the

fill is solid (i.e. opaque) or transparent.

By default, a study’s fill mode is transparent, which allows other chart elements (e.g. the bars)

to show through any filled objects you draw in your script.

Example
setFillMode(FillMode.Solid);

See Also

ChartStudy.FillMode, ChartStudy.setBrushColour(), ChartStudy.fillShape(),
ChartStudy.fillPath()

ChartStudy.setFontColour()

set the font colour for drawing text

Synopsis
setFontColour(colour)

Arguments

colour An integer specifying the new font colour.

Description

The setFontColour() function sets the font colour to be used for subsequent drawing

commands. To change the font face and size, use setFontStyle(). A study’s default font is

black, Verdana, 9pt.

Examples
setFontColour(Colour.Red);

See Also

Colour, ChartStudy.setFontStyle(), ChartStudy.drawText()

Chart Study Objects Reference

ShareScript Language Reference 134

ChartStudy.setFontStyle()

set the font style for drawing text

Synopsis
setFontStyle(name)
setFontStyle(name, size)
setFontStyle(name, size, colour)

Arguments

name A string specifying the new font face.

size Optional. An integer specifying the point size of the font (valid values range

from 4 to 20). If not specified, the current font size is left unchanged.

colour Optional. An integer specifying the new font colour. If not specified, the

current font colour is left unchanged.

Description

The setFontStyle() function sets the font face, size and colour to be used for subsequent

drawing commands. A study’s default font is black, Verdana, 9pt.

Examples
setFontStyle("Times New Roman”, 12, Colour.Black);

See Also

Colour, ChartStudy.setFontColour(), ChartStudy.drawText()

ChartStudy.setFrame()

set the target chart frame for drawing commands

Synopsis
setFrame(frame)

Arguments

frame A constant from the ChartStudy.Frame object specifying the new target frame

for subsequent drawing commands.

Description

The chart window is conceptually divided into multiple frames. The main price chart

(containing the bars) is a frame, with the volume chart drawn beneath it in a separate frame.

Indicators occupy further frames (though these cannot currently be drawn into from a study

script). Each frame has a distinct primary y-axis, which Alpha determines automatically from

the range of data in the frame. The x-axis (date/time) is common to all frames.

The setFrame() function allows you to specify which frame subsequent drawing commands

will target. The main price chart is selected by default.

Example
setFrame(Frame.Volume); // target the volume frame

See Also

ChartStudy.Frame, ChartStudy.setLayer()

Chart Study Objects Reference

ShareScript Language Reference 135

ChartStudy.setInfoText()

set the informational text on the study’s panel

Synopsis
setInfoText()
setInfoText(s)

Arguments

s An optional string used to set the study’s informational text (displayed in the

study’s panel).

Description

The setInfoText() function allows you to set the study’s informational text, which is

displayed in the study’s panel at the top left of the chart window. The text will wrap

automatically in the available space, but can contain newline characters (‘\n’) if you wish to

manually insert line breaks.

To remove the current text, either call setIntoText() with no parameter, or pass an empty

string.

See Also
ChartStudy.setTitle()

ChartStudy.setLayer()

set the target layer for drawing commands

Synopsis
setLayer(layer)

Arguments

layer A constant from the ChartStudy.Layer object specifying the new target layer

for subsequent drawing commands.

Description

A study can draw objects on the chart on a layer either below or above the objects drawn by

Alpha.

The setLayer() function allows you to specify which layer subsequent drawing commands

will target. By default, anything a study script draws will be drawn on top of the chart objects

drawn by Alpha.

Example
setLayer(Layer.Bottom); // draw beneath the bars

See Also

ChartStudy.Layer, ChartStudy.setFrame()

Chart Study Objects Reference

ShareScript Language Reference 136

ChartStudy.setPenColour()

set the pen colour for drawing

Synopsis
setPenColour(colour)

Arguments

colour An integer specifying the new pen colour.

Description

The setPenColour() function sets the pen colour to be used for subsequent drawing

commands. The pen is used to draw lines. It is also used to draw the outlines of paths, shapes,

symbols and text boxes, with the interiors of these objects being filled using the current brush

colour.

To change the pen’s line-style as well as the colour, see setPenStyle().

A study’s default pen is solid black, minimum width. You can use

ChartStudy.getBackColour() to ensure that any colours used will contrast with the chart

window background.

Examples
setPenColour(Colour.Red);
setPenColour(Colour.RGB(128,255,192));

See Also

Colour, ChartStudy.setPenStyle(), ChartStudy.getBackColour()

ChartStudy.setPenStyle()

sets the pen style for drawing

Synopsis
setPenStyle(pen)
setPenStyle(pen, width)
setPenStyle(pen, width, colour)

Arguments

pen A constant from the Pen object specifying the type of pen to use.

width Optional. An integer giving the width of the pen. Valid values are 0 to 7. If not

specified this defaults to 0 (the thinnest line). Greater widths are only allowed

for a pen type of Pen.Solid.

colour Optional. An integer specifying the new pen colour. If not specified, the

current pen colour is left unchanged.

Description

The setPenStyle() function sets the pen to be used for subsequent drawing commands. To

change only the pen’s colour, use setPenColour() instead. A study’s default pen is solid

black, minimum width.

Example
setPenStyle(Pen.Dash, 0, Colour.RGB(128,255,255));

Chart Study Objects Reference

ShareScript Language Reference 137

See Also

Colour, Pen, ChartStudy.setPenColour()

ChartStudy.setTitle()

sets the study’s title

Synopsis
setTitle(s)

Arguments

s A string providing a name for the study

Description

The setTitle() function allows you to set the study’s title, which is displayed in the study’s

panel at the top left of the chart window.

See Also
ChartStudy.setInfoText()

ChartStudy.Shape

constants to specify a shape to draw

Synopsis
Shape.constant

Constants
Ellipse An ellipse.

Rectangle A rectangle.

Diamond A diamond.

Arrow An arrow.

See Also
ChartStudy.drawShape()

ChartStudy.Symbol

constants to specify a symbol to draw

Synopsis
Symbol.constant

Constants
Circle A circle.

Square A square.

TriangleUp A upwards pointing triangle.

Chart Study Objects Reference

ShareScript Language Reference 138

TriangleDown A downwards pointing triangle.

Cross A cross.

FlagUp An upwards pointing “flag” symbol, designed to be drawn with a single

letter inside (used in Alpha to indicate CandleStick patterns).

FlagDown An downwards pointing “flag” symbol, designed to be drawn with a

single letter inside (used in Alpha to indicate CandleStick patterns).

See Also
ChartStudy.drawSymbol()

ChartStudy.TextAlign

constants to specify multi�line text alignment within a text box

Synopsis
TextAlign.constant

Constants
Left The text is left-aligned within its bounding box.

Centre/Center The text is centred within its bounding box.

Right The text is right-aligned within its bounding box.

Description

These constants specify text alignment with the text’s bounding box, as illustrated below:

TextAlign.LeftTextAlign.LeftTextAlign.LeftTextAlign.Left TextAlign.CentreTextAlign.CentreTextAlign.CentreTextAlign.Centre TextAlign.RightTextAlign.RightTextAlign.RightTextAlign.Right

See Also
ChartStudy.drawText()

ChartStudy.undrawItem()

removes a single previously drawn object

Synopsis
undrawItem(handle)

Arguments

handle An integer providing the handle of a previously drawn item

Description

The undrawItem() function can be used to remove a single drawn item from the chart. It

requires the handle returned when the item was originally drawn e.g. by the lineTo() or

drawText() functions.

Example multi-line
text box

Example multi-line
text box

Example multi-line
text box

Chart Study Objects Reference

ShareScript Language Reference 139

If you are drawing complex figures composed of multiple drawn objects, and you later wish

to remove a whole figure, consider accumulating individual handles in an array.

To remove all drawn items from the chart, use clearDisplay() instead.

Example
moveTo(0, bars[0].close);
var lineHandle = lineTo(1, bar[1].close); // store the line’s handle for later
 : :
undrawItem(lineHandle); // remove the previously drawn line

See Also
ChartStudy.clearDisplay()

ChartStudy.useAltRange()

enable/disable plotting using an alternative y�axis

Synopsis
useAltRange(enable)

Arguments

enable A boolean value: true to enable the use of any alternative y-axis, false to use

the primary y-axis. Applies to all subsequent drawing commands.

Description

The useAltRange() function enables (and disables) plotting using the alternative y-axes across

all frames. When this mode is enabled, all subsequent drawing commands are assumed to be

specifying y-coordinates using the current frame’s alternative y-axis range, specified using

the setAltRange() function.

See Also

ChartStudy.setAltRange(), ChartStudy.setFrame()

Storage Objects Reference

ShareScript Language Reference 140

Storage Objects Reference

Storage ShareScript v1.1

persistent storage for columns, indicators and chart studies Object�Storage

Construction

A Storage object is defined as a property of ShareScript Column, Indicator and ChartStudy

objects (note that the property name is lower case). Storage objects can not be created using

the normal JavaScript new() operator.

Methods
getSize() Returns the number of slots in the storage area.

getAt() Returns the number in a slot.

setAt() Stores a number in a slot.

Description

Storage objects provide access to a persistent storage area for ShareScript columns, indicators

and studies. Data stored in this area is available to your scripts even when Alpha has been

closed and then restarted. Along with Dialog objects, Storage objects allow you to create

columns and indicators that behave just like the ones built-in to Alpha.

At present eight slots are provided for storing data in columns and indicators. Thirty-two slots

are provided in studies. Each slot can hold a JavaScript Number value. It is not possible to

store strings. The File class provides an alternative, if you need to write textual data to a file.

Note that since Alpha stores the data in its configuration files using IEEE floats, the values

may lose some precision during the storage and retrieval process. However, this is unlikely to

be encountered with normal use.

Example

A full example of storage area usage can be found in the Column object section.

See Also

Column, Indicator, ChartStudy, File

Storage.getSize()

get the total number of slots

Synopsis
storage.getSize()

Returns

An integer giving the number of slots in the storage object.

Storage Objects Reference

ShareScript Language Reference 141

Storage.getAt()

get the value at a specified slot

Synopsis
storage.getAt(i)

Arguments

i An integer specifying the slot number. Numbering runs from 0 (the first slot)

to getSize()-1.

Throws

RangeError If an invalid slot is requested.

Returns

A Number giving the current value at slot i. The value will be undefined if the slot has not yet

been assigned a value.

Storage.setAt()

set the value at a specified slot

Synopsis
storage.setAt(i)

Arguments

i An integer specifying the slot number. Numbering runs from 0 (the first slot)

to getSize()-1.

Throws

RangeError If an invalid slot is requested.

ShareScript Language Reference 142

AdaptiveStochOsc See Analytics (multi-

value)

addButton() ... 19

addCancelButton() 20

addColLinePicker() 21

addColPicker() .. 20

addDatePicker() 22

addDropList() ... 23

addGroupBox() 23

addHelpButton() 24

addIntEdit() .. 24

addNumEdit() ... 24

addOkButton() .. 25

addSharePicker() 26

addText() .. 27

addTextEdit() .. 27

addTickBox() .. 28

ADX See Analytics (multi-value)

Analytics (multi-value) 7

get() methods...................................... 10

next() .. 10

Analytics (single value) 4

getNext() .. 6

getValue()... 7

Aroon See Analytics (multi-value)

ATR See Analytics (single value)

Bar object ... 10

bar property .. 111

barIndex property 111

bars property ... 112

beep() .. 11

beginPath() ... 112

BidOfferData object 12

call().. 41

CCI See Analytics (single value)

ChartStudy object 107

bar objects .. 10

bar property 111

barIndex property 111

bars property 112

beginPath() 112

BoxAlign constants 113

clearDisplay() 113

createButton() 114

deleteButton() 115

deleteButtons() 115

Directives ... 110

drawAndFillPath() 115

drawAndFillShape() 116

drawPath() .. 116

drawShape() 117

drawSymbol()................................... 118

drawSymbolEx() 119

drawText() .. 119

drawTextEx() 120

endPath() ... 121

FillMode constants 121

fillPath() .. 122

fillShape() .. 122

Frame constants 122

getBackColour() 123

getBarLength() 123

getCurrentShare() 124

getMaxVisibleBarIndex() 124

getMinVisibleBarIndex() 125

init() ... 125

Layer constants 126

lineTo() .. 126

moveTo() ... 127

onBarClose() 127

onMouseClick() 128

onNewBarUpdate() 129

onNewChart() 130

onZoom() ... 131

setAltRange() 131

setBrushColour() 132

setButtonText() 132

setFillMode() 133

setFontColour() 133

setFontStyle() 134

setFrame() .. 134

setInfoText() 135

setLayer() .. 135

setPenColour() 136

setPenStyle() 136

setTitle() .. 137

Shape constants 137

Symbol constants 137

TextAlign constants 138

undrawItem() 138

useAltRange() 139

ChartType constants 97

clear() ... 15

clearDisplay() 113

clearHorizontalLines() 98

close() .. 31

CMO See Analytics (single value)

Colour .. 13

getBValue() 14

getGValue() 14

getRValue() 14

RGB() .. 14

ColourMode constants 98

Column object .. 88

Directives .. 89

getVal() .. 92

getValueForShare() 93

init() ... 90

ShareScript Language Reference 143

setTitle() ... 92

setValueForShare() 93

Console

clear() ... 15

print() ... 44

Correlation See Analytics (single value)

createButton() 114

CTI See Analytics (single value)

dateNum() ... 15

dateNumGetDay() 17

dateNumGetMonth() 16

dateNumGetYear() 16

dateNums

dateNum() .. 15

dateNumGetDay() 17

dateNumGetMonth() 16

dateNumGetYear() 16

PriceData objects 43

deleteButton() 115

deleteButtons() 115

Dialog Boxes See Dialog objects

Dialog objects ... 17

addButton() .. 19

addCancelButton() 20

addColLinePicker() 21

addColPicker() 20

addDatePicker() 22

addDropList() 23

addGroupBox() 23

addHelpButton() 24

addIntEdit() .. 24

addNumEdit()..................................... 24

addOkButton() 25

addSharePicker() 26

addText() .. 27

addTextEdit() 27

addTickBox() 28

getValue()... 28

show() .. 29

Directives

Chart Study scripts 110

Column scripts 89

Indicator scripts 96

DLL files See NativeLibrary objects

drawAndFillPath() 115

drawAndFillShape() 116

drawPath() .. 116

drawShape() .. 117

drawSymbol() 118

drawSymbolEx() 119

drawText() .. 119

drawTextEx() .. 120

endPath() .. 121

File objects ... 29

close() ... 31

open() .. 31

readLine() .. 32

writeLine() ... 32

fillPath() ... 122

fillShape() .. 122

get() methods ... 10

getActivities() .. 52

getAssocShares() 53

getAt() .. 141

getBackColour() 98, 123

getBarLength() 99, 123

getBValue() ... 14

getCap() ... 53

getClose() ... 54

getCloseArray() 54

getCloseArrayDates() 55

getCloseOnDate() 55

getCurrency() ... 56

getCurrencyR() 56

getCurrentShare() 124

getEMS() ... 56

getEPIC() ... 57

getFullActivities() 53

getGraph() .. 99

getGValue() ... 14

getHigh() .. 57

getHighOnDate() 58

getIBarArray() 59

getIBarArrayOnDate() 60

getIBid() ... 60

getIBidOfferArray() 61

getIBidOfferArrayOnDate() 61

getIClose() ... 62

getIDate() ... 62

getIDateNum() 63

getIMid() .. 63

getIMidHigh() .. 64

getIMidLow() .. 64

getIndices() .. 58

getIndustry() .. 58

getIOffer() .. 64

getIOpen() .. 65

getISIN() .. 59

getITradeArray() 65

getITradeHigh() 66

getITradeLow() 67

getITradeOnDate() 66

getList() ... 33

getListing() .. 67

getLow() .. 67

getLowOnDate() 68

getMarket() .. 68

getMarketCloseTime() 69

getMarketOffsetGMT() 69

getMarketOpenTime() 69

ShareScript Language Reference 144

getMaxVisibleBarIndex() 124

getMinVisibleBarIndex() 125

getMonthlyBarArray() 70

getName() ... 70

getNext() ... 6, 39

getNMS() .. 71

getNotes() ... 71

getNumShares() 71

getOpen() .. 71

getOpenOnDate() 72

getPortfolio() .. 33

getPortfolioNames() 34, 35

getPrice() .. 72

getPriceArray() 73

getPriceArrayDates() 73

getPriceOnDate() 74

getResult() .. 75

getResultArray() 75

getRiskAnalysis() 76

getRValue() .. 14

getScriptPath() .. 34

getSector() .. 78

getSectorIndex() 78

getSEDOL() .. 78

getShare() ... 35

getShareName() 79

getShareNum() 79

getShareScopeID() 79

getSize().. 140

getSubSector() .. 80

getSuperSector() 80

getTradingSystem() 80

getType() .. 81

getUncrossingPrice() 81

getVal() ... 92

getValue() 7, 28, 40

getValueForShare() 93

getVolume() .. 81

getVolumeOnDate() 82

getWeeklyBarArray() 82

Indicator object 95

ChartType constants 97

clearHorizontalLines() 98

ColourMode constants 98

Directives ... 96

getBackColour() 98

getBarLength() 99

getGraph() .. 99

init() .. 100

Layer constants 101

Range constants 101

setHorizontalLine() 102

setLayer() ... 102

setRange() .. 103

setSeriesChartType() 103

setSeriesColour() 104

setSeriesColourMode() 104

setSeriesLineStyle()......................... 105

setTitle() .. 105

init() ... See Column, Indicator, ChartStudy

object

Instruments See Share object

isInAuction() .. 83

isSuspended() ... 83

lineTo() .. 126

List constants ... 36

load() .. 37

MA objects .. 37

getNext() .. 39

getValue() .. 40

MACD See Analytics (multi-value)

MinMax See Analytics (multi-value)

Momentum See Analytics (single value)

moveTo() ... 127

Moving Averages.............. See MA objects

NativeLibrary objects 40

call() .. 41

next() .. 10

OHLCV records See PriceData object

OnBalVol See Analytics (single value)

onBarClose() .. 127

onMouseClick() 128

onNewBarUpdate() 129

onNewChart() 130

onZoom() ... 131

open() ... 31

Oscillator See Analytics (single value)

Pen constants ... 42

PriceData object 43

PriceOsc See Analytics (single value)

print() ... 44

RA (Risk Analysis) constants 44

readLine() .. 32

Result constants 45

ResultType constants 49

RGB() .. 14

RSI See Analytics (single value)

setAltRange() 131

setAt() .. 141

setBrushColour() 132

setButtonText() 132

setFillMode() 133

setFontColour() 133

setFontStyle() 134

setFrame() .. 134

setHorizontalLine() 102

setInfoText() .. 135

setLayer() 102, 135

setPenColour() 136

setPenStyle() .. 136

ShareScript Language Reference 145

setRange() ... 103

setSeriesChartType() 103

setSeriesColour() 104

setSeriesColourMode() 104

setSeriesLineStyle() 105

setTitle() 92, 105, 137

setValueForShare() 93

Share object .. 49

getActivities() 52

getAssocShares() 53

getCap() .. 53

getClose() ... 54

getCloseArray() 54

getCloseArrayDates() 55

getCloseOnDate() 55

getCurrency() 56

getCurrencyR() 56

getEMS() .. 56

getEPIC() ... 57

getFullActivities() 53

getHigh() .. 57

getHighOnDate() 58

getIBarArray() 59

getIBarArrayOnDate() 60

getIBid() ... 60

getIBidOfferArray() 61

getIBidOfferArrayOnDate() 61

getIClose() .. 62

getIDate() ... 62

getIDateNum() 63

getIMid() .. 63

getIMidHigh() 64

getIMidLow() 64

getIndices()... 58

getIndustry() 58

getIOffer() .. 64

getIOpen() .. 65

getISIN() .. 59

getITradeArray() 65

getITradeArrayOnDate() 66

getITradeHigh() 66

getITradeLow() 67

getListing() ... 67

getLow() ... 67

getLowOnDate() 68

getMarket()... 68

getMarketCloseTime() 69

getMarketOffsetGMT() 69

getMarketOpenTime() 69

getMonthlyBarArray() 70

getName()... 70

getNMS() ... 71

getNotes() ... 71

getNumShares() 71

getOpen() ... 71

getOpenOnDate() 72

getPrice() ... 72

getPriceArray() 73

getPriceArrayDates() 73

getPriceOnDate() 74

getResult() ... 75

getResultArray() 75

getRiskAnalysis() 76

getSector() ... 78

getSectorIndex() 78

getSEDOL() 78

getShareName() 79

getShareNum() 79

getShareScopeID() 79

getSubSector() 80

getSuperSector() 80

getTradingSystem() 80

getType() ... 81

getUncrossingPrice() 81

getVolume() 81

getVolumeOnDate() 82

getWeeklyBarArray() 82

isInAuction() 83

isSuspended() 83

show() .. 29

Sounds

beep() ... 11

StochOsc See Analytics (multi-value)

Storage objects 140

getAt() ... 141

getSize() .. 140

setAt() .. 141

timeNum() ... 83

timeNumGetHour()................................ 84

timeNumGetMin() 85

timeNumGetSec() 85

timeNums

timeNum() ... 83

timeNumGetHour() 84

timeNumGetMin() 85

timeNumGetSec() 85

TradeData object 85

TradeType constants 86

Trend See Analytics (multi-value)

UltimateOsc ... See Analytics (single value)

undrawItem() 138

useAltRange() 139

Variance See Analytics (single value)

VHF See Analytics (single value)

Volatility See Analytics (single value)

Williams %R .. See Analytics (single value)

WilliamsAD ... See Analytics (single value)

writeLine() ... 32

